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But policies do make jumps:
• Students receive a “first” if they score 70 or higher
• French municipalities use PR elections if population is 3,500 

(now 1,000) or higher
• A candidate is elected if she receives more votes than any 

other candidate
• Journalists report a recession if the economy shrinks for two 

consecutive quarters

“Natura non facit saltus.” 
(Nature makes no jump.) 

— Gottfried Leibniz
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If potential outcomes don’t jump but treatment 
does, then near the threshold we have comparable 
groups getting different treatment.
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Use units with 
scores just above 70 
to estimate Y1 at 70 

Use units with 
scores just below 70 
to estimate Y0 at 70 

Goal: estimate ATE at threshold (70), i.e. Local Average Treatment 
Effect (LATE), using units just above and below the threshold.
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What people do now

Most common approach: local regression, as on previous slide, with:
• bandwidth (h) chosen by algorithm that considers curvature of CEF 

and density of data
• weights that are larger closer to the threshold (triangular kernel)
• (sometimes) polynomial terms (square, cube, etc) in estimating CEF
• bias correction (Calonico, Cattaneo, Titiunik) based on curvature
• robustness checks to show same result with many approaches
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rdrobust 
package (Stata, 
R), other work 
by Calonico, 
Cattaneo, Titiunik

Rocío Titiunik
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Remember, basic idea of RDD is to estimate LATE at threshold, 
where Y1 is estimated using data just above threshold and Y0 using 
data just below.
What can go wrong?
• Bias from misspecification (see previous slides — depends on 

algorithm, also curvature of CEF, amount of data)
• Sorting: units just above the threshold may differ substantially 

from those just below if some units choose their X (and thus 
treatment), and the ability to choose depends on variables that affect 
outcome.

What can go wrong?
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• Is the density of the running variable continuous across the 
threshold? (McCrary 2008)

• Are covariates (e.g. incumbency status, mayor characteristics, 
lagged outcomes) continuous across the threshold? 

So how do we check for sorting?
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Example 1: tests of the continuity assumption (1)

McCrary test for continuity in the density
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Example 1: tests of the continuity assumption (2)

Tests for continuity in covariate: whether or not the election took 
place in a borough (vs county) constituency
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Example 1: tests of the continuity assumption (3)

Tests for continuity in covariate: whether or not the Conservatives 
won the previous election 



16

Example 2: Eggers (2015) on turnout and proportionality



16

Research question: Does a more proportional electoral system lead to 
more voter turnout on average?

Example 2: Eggers (2015) on turnout and proportionality



16

Research question: Does a more proportional electoral system lead to 
more voter turnout on average?
Strategy: Use RDD to compare French municipalities using PR and 
plurality systems at the 3,500 population cutoff determining electoral 
system 

Example 2: Eggers (2015) on turnout and proportionality



16

Research question: Does a more proportional electoral system lead to 
more voter turnout on average?
Strategy: Use RDD to compare French municipalities using PR and 
plurality systems at the 3,500 population cutoff determining electoral 
system 

Example 2: Eggers (2015) on turnout and proportionality

Turnout in 2001 
municipal elections, 

by municipal 
population



17

Example 2: testing the continuity assumption

(Page 144)
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Example 2: testing the continuity assumption (2)
Estimated effect of crossing 3,500 on turnout in municipal elections and 
higher-level elections
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Example 2: testing the continuity assumption (3)
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First problem: 
same threshold 
often used to 
determine more 
than one 
treatment.

See Eggers, Freier, 
Grembi, 
Nannichini 
(forthcoming) and 
Eggers (2015) for 
ideas about 
handling this.

Does RDD work for political science applications? The 
case of population thresholds (1)
Eggers, Freier, Grembi, and Nannicini (forthcoming): There may be 
more reason to doubt RDDs based on population thresholds.
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Pooling all thresholds, censuses from France:

Does RDD work for political science applications? The 
case of population thresholds (3)
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Even worse in Italy:

Does RDD work for political science applications? The 
case of population thresholds (3)

Histograms (bin width = 10)
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(1) Why do you think there is sorting in the municipal 
population case but not (apparently) close elections?

(2) If there is sorting, is the RDD ruined?  

Does RDD work for political science applications? 
General questions about sorting
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Some bad ideas for an RDD

• Some political scientists define democracy as being 6 or 
higher in Polity score. I will study the effect of democracy on 
redistribution with an RDD using a 6 on Polity as the cutoff.
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higher in Polity score. I will study the effect of democracy on 
redistribution with an RDD using a 6 on Polity as the cutoff.

• Living through the stock market crash of 1929 had a major 
effect on people’s risk tolerance and savings behavior. I will 
measure this effect using an RDD with “age in 1929” as the 
running variable and I will use a cutoff of 21 years old, as this 
is when people “come of age”.

• Other suggestions?
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Summing up and generalizing

To address selection bias, we must understand the process of 
selection (i.e. assignment mechanism). 
RDD is an extreme case of selection on observables.
Causal inference is most favorable when there is an assignment 
mechanism that
• is transparent/well understood (at least in part)
• treats similar units differently
Think about what "treating similar units differently" means in 
matching, IV, diff-in-diff/panel, RDD.
You may find other cases where a transparent rule treats similar 
units differently — keep an eye out!


