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We want you to understand:

• what a dependent 
variable is

• what an independent 
variable is

• what the coefficients 
mean (intercept, slopes)

• what the stars mean (i.e. 
what p<0.05 means)

• what the standard 
errors mean

Dependent variable: Nobel Prizes awarded per capita (in 
log scale)

(1) (2) (3)

Intercept -1.629*
(0.509)

-3.166*
(0.511)

-2.982*
(0.527)

Chocolate 
consumption per 
capita (log scale)

2.092*
(0.298)

1.026*
(0.326)

0.709
(0.415)

GDP/capita  
(thousands of USD)

0.105*
(0.024)

0.106*
(0.024)

NW Europe
0.549

(0.452)

R² 0.70 0.85 0.86

N 34 34 34

Standard errors in parentheses.  * Indicates p<0.05
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Local authorities with more foreign-born 
residents were less supportive of Brexit
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Contact hypothesis
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Contact hypothesis

“Prejudice (unless deeply rooted in the character structure 
of the individual) may be reduced by equal status contact 
between majority and minority groups in the pursuit of 
common goals. The effect is greatly enhanced if this 
contact is sanctioned by institutional supports (i.e., by law, 
custom or local atmosphere), and provided it is of a sort 
that leads to the perception of common interests and 
common humanity between members of the two groups.”  

— Gordon Allport (1954) The Nature of Prejudice
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Question

Brexit support is higher in places with fewer foreign-born 
residents. Does contact between immigrants and other 
local residents explain this pattern?

• How could this pattern be explained by the contact 
hypothesis? (easy)

• How could this pattern be explained by other factors? 
(harder)
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My lectures in weeks 5, 6, and 7

Running question: Why is there such a strong relationship 
between % foreign born and opposition to Brexit?
Plan:
• How do we summarize the relationship between two 

variables?
• bivariate OLS regression as main focus

• How do we summarize the relationship between two 
variables controlling for a third variable?
• multivariate OLS regression as main focus

• How do we summarize our uncertainty about our 
conclusions?
• standard errors, p-values, confidence intervals
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Summarizing bivariate 
relationships:

options other than OLS regression
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Local authorities with more foreign-born 
residents were less supportive of Brexit
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Kernel smoother (lokern function in R)
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Single-number summaries: covariance

How do x and 
y tend to 
move together, 
i.e. how do 
they covary? 

When x is 
above its mean, 
is y also above 
its mean? By 
how much?
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Correlation examples from Lijphart’s data
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Correlation examples from Lijphart’s data

r = −0.05
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The most important summary: OLS 
regression
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Step 1 for understanding OLS: residuals

A residual is the difference between the actual y-value 
and the predicted y-value.  
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squared residuals
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Step 3 for understanding OLS: minimizing 
the sum of squared residuals

The OLS 
regression line 
minimizes the 
sum of squared 
residuals (SSR). 

Hence ordinary 
least squares.
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Coefficients: the two variables in a 
bivariate regression
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How well does our regression line predict the 
outcome? R²
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Connections between measures of bivariate 
relationships

Key measures:
• covariance
• correlation
• OLS regression 

output: 
• intercept
• slope 
• R²

For any two variables, 
covariance, 
correlation, and 
regression slope will 
all have the same sign.

Covariance and 
regression slope (but 
not correlation) depend 
on the units

Regression slope 
(but not covariance 
or correlation) 
depends on which is 
Y and which is X

For bivariate relationships, 
R²  = correlation²
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Why are we minimizing squared residuals?

There are other ways 
to draw a predictive 
line.

But OLS (minimizing 
squared residuals)
• produces nice 

analytical solutions
• recovers the mean
• among unbiased 
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