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Diff-in-diff: Binary 
treatment applied at a 
point in time to a 
subset of the units in 
the dataset

t  =  0 t  =  1

E[y1i,post  -‐  y0i,post|di=1]

E[y0i,post|di=1]

E[y1i,post|di=0]

E[y0i,pre|di=0]

E[y0i,pre|di=1]

E[y1i,post|di=1]

(ATT)

Parallel trends assumption
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Generalizing and expanding   
— other kinds of grouped data (not necessarily time) 
— general pattern of treatment application (not necessarily 
at same point in time)  
— generalized treatment (not necessarily binary)  



Back to RCT

4



More simulations!
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Last time: from randomized controlled trial (RCT), we 
added a “baseline” measure: i.e. pre-treatment outcome for 
all units, with possible time trend.    

This time: we start with an RCT in grouped data (e.g. 
pairs of twins participating in a drug trial; municipalities in 
districts participating in a field experiment) and add a 
second group (e.g. time periods).



Simulation 1: random 
assignment in grouped data
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(1) Generate data according to  
xⱼ ∼ N(0,1) 

y0i ∼ N(xⱼ₍ᵢ₎,1) 
y1i ∼ N(xⱼ₍ᵢ₎ + τ,1)  

τ = 1 
where i indexes units, j indexes groups, 
and j(i) indicates the group of unit i  
(2) Assign treatment (d) randomly 
(3) Estimate ATT (effect of d on y) 
by 

(3a) Difference-in-means: average 
difference in observed y between 
treated and control units 
i.e. E[yᵢ|dᵢ = 1] - E[yᵢ|dᵢ = 0]

Is the unconfoundedness assumption met in this case? 

(3b) Controlling for xⱼ: Regression 
of observed yᵢ on dᵢ  and xⱼ₍ᵢ₎ 
i.e. yᵢ = α + β₁ dᵢ + β₂ xⱼ₍ᵢ₎ + εᵢ  
(3c) LSDV: Regression of observed 
yᵢ on dᵢ and indicator for each j 

i.e. yᵢ = αⱼ₍ᵢ₎ + β₁ dᵢ + εᵢ



Simulation 1 (random assignment in grouped data): 
distribution of estimates across replications
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(The more units 
per group, the 
more similar the 
densities for the 
two control 
strategies.)



Simulation 2: non-random assignment in 
grouped data
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(1) Generate data according to  
xⱼ ∼ N(0,1) 

y0i ∼ N(xⱼ₍ᵢ₎,1) 
y1i ∼ N(xⱼ₍ᵢ₎ + τ,1)  

τ = 1 
where i indexes units, j indexes groups, 
and j(i) indicates the group of unit i  
(2) Assign treatment (d) as function of xⱼ: 

Pr(di=1) = 1/(1 + exp(-xj)) 
(3) Estimate ATT (effect of d on y) by 

(3a) Difference-in-means: average 
difference in observed y between treated 
and control units 
i.e. E[yᵢ|dᵢ = 1] - E[yᵢ|dᵢ = 0]

Is the unconfoundedness assumption met in this case? 

(3b) Controlling for xⱼ: Regression 
of observed yᵢ on dᵢ  and xⱼ₍ᵢ₎ 
i.e. yᵢ = α + β₁ dᵢ + β₂ xⱼ₍ᵢ₎ + εᵢ  
(3c) LSDV: Regression of 
observed yᵢ on dᵢ and indicator for 
each j 
i.e. yᵢ = αⱼ₍ᵢ₎ + β₁ dᵢ + εᵢ



Simulation 2 (non-random assignment in grouped data): 
distribution of estimates across replications
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(The more units 
per group, the 
more similar the 
densities for the 
two control 
strategies.)



Simulation 2 (non-random assignment in grouped data): 
distribution of estimates across replications
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(The more units 
per group, the 
more similar the 
densities for the 
two control 
strategies.)

The point: Unobserved 
confounder? OK if it’s 
shared by an identifiable 
group (e.g. district, 
school, judge)



LSDV regression and deviation from means: why 
do they give the same result?
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LSDV regression: including a dummy for each group. (What 
was this in the Elbe example? Snow example?) 



LSDV regression and deviation from means: why 
do they give the same result?

10

LSDV regression: including a dummy for each group. (What 
was this in the Elbe example? Snow example?) 



LSDV regression and deviation from means: why 
do they give the same result?

10

LSDV regression: including a dummy for each group. (What 
was this in the Elbe example? Snow example?) 

“Deviation from means” regression: 



LSDV regression and deviation from means: why 
do they give the same result?

10

LSDV regression: including a dummy for each group. (What 
was this in the Elbe example? Snow example?) 

“Deviation from means” regression: 

Define ỹᵢ=yᵢ - y̅ⱼ(i), i.e. i’s deviation from group mean. Similar 
for d ̃i .
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LSDV regression: including a dummy for each group. (What 
was this in the Elbe example? Snow example?) 

“Deviation from means” regression: 

Define ỹᵢ=yᵢ - y̅ⱼ(i), i.e. i’s deviation from group mean. Similar 
for d ̃i .

 Then estimate ỹᵢ = α + β₁ d̃ᵢ + ε̃i  

Important fact: They yield the same estimate for β₁. Why? 



LSDV regression and deviation from means: why 
do they give the same result? (2)
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LSDV regression and deviation from means: why 
do they give the same result? (2)

11

Key idea from MHE’s regression anatomy: 
Given regression formula y = β0+β1d+γ1z1+γ2z2+γ3z3 + … + 
ε
Define d̃ as the residuals from a regression of d on all the z’s.

Define ỹ as the residuals from a regression of y on all the z’s.

Then regress ỹ on d̃:
  ỹ = β̃₀ + β̃1d̃ + ε̃
Here’s the exciting part:  β₁ = β̃₁

Connection: If the z’s are the group dummies,  ỹ = β̃₀ + β̃1d̃ + 
ε ̃ is the deviations-from-means regression.
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Partial regression plot
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No matter how complex your analysis (fixed effects, clustering, 
etc), when your treatment is continuous you should show the 
conditional bivariate relationship (y on x, controlling for z1, z2, 
z3, etc) in a partial regression plot:
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More intuition of fixed effects
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Fixed effects regression addresses group-specific unobservable 
confounders. How? Think about what would happen if you 
observed and included these confounders:

• Consider LSDV version: 

If you included group-specific unobservable confounders, they 
would drop out due to multicollinearity with group dummies.

• Consider deviation from means version:

If you included group-specific unobservable confounders 
(before calculating deviations from means), they would drop 
out because they are constant within groups.  



Applying one-way fixed effects
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Applying one-way fixed effects

14

Key features: 
• Data are organized into groups (e.g. individuals within 

households, households within municipalities, 
municipalities within districts, countries within regions, 
etc).

• Treatment varies within groups.
• Unconfoundedness/“selection on observables” may not 

hold in general: Treated and control units would be 
different even in absence of treatment

• But unconfoundedness holds within groups: Treated and 
control units in the same group are comparable

Does this apply to your case?



Adding a second group dimension
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In simulations 1 and 2, each unit belonged to 1 group

We can easily think about situations where each belongs to 2 or more groups 

Group 1 Group 2 Group 3 Group 4

Groupi 1 Groupi 2 Groupi 3 Groupi 4

Groupj 1

Groupj 2

Groupj 3

Groupj 4

Most common: geographic 
unit and time period. 

But also: class and ethnicity, 
education level and gender, etc.



Treatment assignment on the basis of two 
group dimensions
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Suppose there is an unobserved confounder (i.e. something related 
to treatment that affects potential outcomes) that varies by district 
and year. 

Suppose the relationship between the confounder and the district 
and year is additive (not interactive), i.e.

A. the confounder is higher for some districts than others
B. the confounder is higher for some years than others
• but NOT true that confounder is higher for some district-year 

combinations than others, once we account for A and B

Then we get the right answer through LSDV with dummies for 
district and year, or regression with district & year fixed effects. 



Simulation 3: random assignment in twice-grouped data
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(1) Generate data according to 

xⱼ ∼ N(0,1) 
λt ∼ N(0,1) 

y0i ∼ N(xⱼ₍ᵢ₎+λt(i),1) 

y1i ∼ N(xⱼ₍ᵢ₎+λt(i)+ τ,1)  
τ = 1 

where i indexes units, j indexes group 
1, t indexes group t, and j(i) and t(i) 
indicate the group and time of unit i  
(2) Assign treatment (d) randomly 
(3) Estimate ATT (effect of d on y) 
by 

(3a) Difference-in-means: average 
difference in observed y between 
treated and control units 
i.e. E[yᵢ|dᵢ = 1] - E[yᵢ|dᵢ = 0]

(3b) Controlling for xⱼ and λt: 
Regression of observed yᵢ on dᵢ, 
xⱼ₍ᵢ₎, and λt(i) 
i.e. yᵢ = α + β₁ dᵢ + β₂ xⱼ₍ᵢ₎ + β₃ 
λt(i) + εᵢ  
(3c) Controlling for group 1: 
Regression of observed yᵢ on dᵢ 
and indicator for each j 
i.e. yᵢ = αⱼ₍ᵢ₎ + β₁ dᵢ + εᵢ 
(3d) Controlling for groups 1 and 
2: Regression of observed yᵢ on dᵢ 
and indicator for each j and t 
i.e. yᵢ = αⱼ₍ᵢ₎ +  αt(i) + β₁ dᵢ + εᵢ  



Simulation 3 (random assignment in twice-grouped 
data): distribution of estimates across replications
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Simulation 3: random assignment in twice-grouped data
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(1) Generate data according to  
xⱼ ~ N(0,1) 
λt ~ N(0,1) 

y0i ~ N(xⱼ₍ᵢ₎+λt(i),1) 
y1i ~ N(xⱼ₍ᵢ₎+λt(i)+ τ,1)  

τ = 1 
where i indexes units, j indexes group 1, 
t indexes group t, and j(i) and t(i) 
indicate the group and time of unit i  
(2) Assign treatment (d) as function of 
xⱼ and λt: 

Pr(di=1) = 1/(1 + exp(-xj-λt)) 
(3) Estimate ATT (effect of d on y) by 

(3a) Difference-in-means: average 
difference in observed y between 
treated and control units 
i.e. E[yᵢ|dᵢ = 1] - E[yᵢ|dᵢ = 0]

(3b) Controlling for xⱼ and λt: 
Regression of observed yᵢ on dᵢ, 
xⱼ₍ᵢ₎, and λt(i) 
i.e. yᵢ = α + β₁ dᵢ + β₂ xⱼ₍ᵢ₎ + β₃ 
λt(i) + εᵢ  
(3c) Controlling for group 1: 
Regression of observed yᵢ on dᵢ 
and indicator for each j 
i.e. yᵢ = αⱼ₍ᵢ₎ + β₁ dᵢ + εᵢ 
(3d) Controlling for groups 1 and 
2: Regression of observed yᵢ on dᵢ 
and indicator for each j and t 
i.e. yᵢ = αⱼ₍ᵢ₎ +  αt(i) + β₁ dᵢ + εᵢ  



Simulation 4 (non-random assignment in twice grouped 
data): distribution of estimates across replications
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Toward the conditional independence assumption (CIA)
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Recall:  for binary treatment, the difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

Toward the conditional independence assumption (CIA)

21



Recall:  for binary treatment, the difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

Toward the conditional independence assumption (CIA)

21

ATT



Recall:  for binary treatment, the difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

Toward the conditional independence assumption (CIA)

21

ATT Selection bias



Recall:  for binary treatment, the difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

Toward the conditional independence assumption (CIA)

21

ATT Selection bias

Sometimes the independence assumption does not hold:
E[y0i|di=1] ≠ E[y0i|di=0]



Recall:  for binary treatment, the difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

Toward the conditional independence assumption (CIA)

21

ATT Selection bias

Sometimes the independence assumption does not hold:
E[y0i|di=1] ≠ E[y0i|di=0]

But if the conditional independence assumption (CIA) does hold
E[y0i|Xi,di=1] = E[y0i|Xi,di=0],



Recall:  for binary treatment, the difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

Toward the conditional independence assumption (CIA)

21

ATT Selection bias

Sometimes the independence assumption does not hold:
E[y0i|di=1] ≠ E[y0i|di=0]

But if the conditional independence assumption (CIA) does hold
E[y0i|Xi,di=1] = E[y0i|Xi,di=0],

then we have
E[y1i|Xi,di=1] - E[y0i|Xi,di=0] = E[y1i|Xi,di=1] - E[y0i|Xi,di=1]



Recall:  for binary treatment, the difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

Toward the conditional independence assumption (CIA)

21

ATT Selection bias

Sometimes the independence assumption does not hold:
E[y0i|di=1] ≠ E[y0i|di=0]

But if the conditional independence assumption (CIA) does hold
E[y0i|Xi,di=1] = E[y0i|Xi,di=0],

then we have
E[y1i|Xi,di=1] - E[y0i|Xi,di=0] = E[y1i|Xi,di=1] - E[y0i|Xi,di=1]

Diff-in-means controlling for X



Recall:  for binary treatment, the difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

Toward the conditional independence assumption (CIA)

21

ATT Selection bias

Sometimes the independence assumption does not hold:
E[y0i|di=1] ≠ E[y0i|di=0]

But if the conditional independence assumption (CIA) does hold
E[y0i|Xi,di=1] = E[y0i|Xi,di=0],

then we have
E[y1i|Xi,di=1] - E[y0i|Xi,di=0] = E[y1i|Xi,di=1] - E[y0i|Xi,di=1]

ATTDiff-in-means controlling for X



CIA and panel data
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t  =  0 t  =  1

E[y1i,post  -‐  y0i,post|di=1]

E[y0i,post|di=1]

E[y1i,post|di=0]

E[y0i,pre|di=0]

E[y0i,pre|di=1]

E[y1i,post|di=1]

(ATT)



From the perspective of causal 
inference, panel data offers 
intriguing X variables that make 
the CIA plausible. 

For example, support for SPD in 
flooded and non-flooded 
districts would be different in 
absence of flooding, but maybe 
not once we control for past 
support for SPD and the time 
trend. 
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t  =  0 t  =  1

E[y1i,post  -‐  y0i,post|di=1]
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In diff-in-diff, CIA amounts to: parallel trends assumption.
Generally in panel data (with unit and time fixed effects), CIA 
amounts to: no time-varying confounders within units. 
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Sometimes the independence assumption does not hold:
E[y0i|di=1] ≠ E[y0i|di=0]

But if the conditional independence assumption (CIA) does hold
E[y0i|Xi,di=1] = E[y0i|Xi,di=0],

then we have
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Going beyond binary treatment
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CIA extends beyond binary treatment: 

Conditional on X, the units that get a particular value of treatment 
have the same potential outcomes for ALL values of treatment as 
the units that get another particular value of treatment. (See MHE 
54-59). 

Panel fixed effects regression can be seen as a particular set of 
controls that might make the CIA believable. 
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Big picture: the CIA is everywhere
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Whenever we causally interpret a regression, we make a conditional 
independence assumption (CIA); what varies is what is in the 
conditioning set and how convincing it is. 
• In RCT, CIA conditions on nothing. 
• In generic cross-section regression (e.g. trade and democracy), CIA 

that conditions on a large set of confounders may be convincing.
• In grouped cross-section, CIA that conditions on group (i.e. one-way 

fixed effects) may be convincing.
• In typical panel fixed effects regression, CIA that conditions on group 

and time period (i.e. panel fixed effects) may be convincing. 
• If CIA is more plausible in panel than cross-section, it is because 

time-invariant unit-level confounders are important. 

You should always state your CIA and provide conditions in which it 
might be violated.   
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In UK from 1885, constituency spending limits are a deterministic 
function of population and borough/county classification.
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Question: how does spending limit affect avg margin between 
winner and loser? 
Basic approach: 

So, can think of this as:
• LSDV with dummies for constituency and year
• Regression of “demeaned” (by constituency and year) win margin 

on “demeaned” (by constituency and year) spending limits
• Regression of residuals from [regression of win margin on 

constituency and year dummies] on residuals from [regression of 
spending limits on constituency and year dummies]



Example study: Fouirnaies, “How Do Campaign Spending Limits 
Affect Electoral Competition? Evidence from Great Britain 
1885-2010"

28

Relationship between spending limits and WinMargin:
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y-axis: residuals from regressing WinMargin on constituency and year dummies
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y-axis: residuals from regressing WinMargin on constituency and year dummies
x-axis: residuals from regressing spending limits on constituency and year dummies 
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What is the CIA here?
“In absence of treatment, affected constituencies would have 
evolved as unaffected [constituencies].”

i.e. no time-varying confounders. 
i.e. changes in spending limits not systematically related to 
changes in competition, controlling for changes in other places  
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Levitt (1994), “Using Repeat Challengers to Estimate the Effect of Campaign 
Spending on Election Outcomes in the U.S. House”. 

Question: What is the effect of campaign spending on election outcomes? 

Consider running this cross-sectional regression:  
DemCongVoteShareᵢ = β₀ + β₁ (DemSpendᵢ - RepSpendᵢ) + β₂ DemPresVoteShareᵢ + εᵢ 

where 
DemCongVoteShareᵢ: Vote share for Democratic congressional candidate in district i 
DemSpendᵢ, RepSpendᵢ: Spending by Democratic and Republican congressional candidates in district i 
DemPresVoteShareᵢ: Vote share for Democratic presidential candidate in district i 

• Would you expect β₁ to be positive or negative?  
• What CIA is necessary to interpret that coefficient causally? 
• Why might this CIA be violated?



Example: Levitt (1994) on effects of campaign spending (2)
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Question: What is the effect of campaign spending on election outcomes? 
Unmeasured confounder: Candidate quality (i.e. attractiveness)  
Research design: Two-way fixed effects, where groups are (i) pairs of candidates and (ii) 
years. (Also includes scandal and incumbency dummies.) 
Ways of stating the CIA:  
• Levitt (782-783): “An individual candidate’s quality must be constant over time.” 
• Election-relevant features of pairs of candidates are fixed over time.  
• The same pair of candidates in a different year is comparable, after controlling for 

nationwide year-to-year swings in electoral outcomes.  
• Variation in spending over time within a given pair of candidates is unrelated to 

potential outcomes conditional on the year (and other controls).  

To discuss:  
• How might this CIA be violated? 
• Do pairs of candidates who only appear once in the dataset contribute anything to the 

estimation of the effect? 



Fixed effects and first-differences
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Consider situation where (as in simulation) xj(i) is a time-invariant confounder:  
yit = β₀ + β₁ dit + β₂ xj(i) + εit  

Above we addressed this with LSDV/group fixed effects, which we showed was 
equivalent to a deviation-from-means regression:  

ỹit = β₀ + β₁ d̃it + εit 

Another way to address time-invariant confounders in panel data: first-differences. 
Calculate Δyit = yit - yi,t-1, etc and estimate  

Δ yit = β₀ + β₁ Δdit + Δεit 

As explained in MHE (224):  
• Algebraically equivalent when just two periods 
• Not otherwise, but consistent (i.e. as sample size increases, both converge to truth)
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Ansell (2014), “The Political Economy of Ownership: Housing Markets 
and the Welfare State” 

Question: How does variation in house prices affect homeowners’ 
preferences regarding redistribution?  

Consider running this cross-sectional regression:  
SupportForRedistributionᵢ = β₀ + β₁ PriceOfHouseᵢ + β₂ Incomeᵢ + β₃ Ageᵢ εᵢ 

• Would you expect β₁ to be positive or negative?  
• What CIA is necessary to interpret that coefficient causally? 
• Why might this CIA be violated?
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Ansell (2014), “The Political Economy of Ownership: Housing 
Markets and the Welfare State” 

Question: How does variation in house prices affect homeowners’ 
preferences regarding redistribution?    
Research design: First-difference regression in seven-wave British 
Household Panel Survey  
The CIA: Confounding variables are constant within individuals 
between two waves of panel. 

How might this be violated?



Not all panel FE analysis is causal
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Example: Fowler (2015), “Do elections select better representatives?” 

Question: Why do incumbents win more electoral support than non-incumbents?   
Research design: Descriptive decomposition. 

• Estimate  
DemVoteShareᵢ = β₀ + β₁ (DemIncumbentᵢ - RepIncumbentᵢ) + εᵢ  

• Estimate same thing with state-decade and year fixed effects: 
DemVoteShareᵢ = αⱼ + γt + β₁ (DemIncumbentᵢ - RepIncumbentᵢ) + εᵢ 

• Interpret difference in β₁ as a measure of “party match” component of 
incumbent success (tendency of incumbents to belong to locally-popular 
party)  

• (Estimate “officeholder benefits” via RDD)  
The CIA: Not relevant, because no causal claims.



How do you test the CIA? 
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Because of the fundamental problem of causal inference, CIA 
is always an assumption; it cannot be directly tested.

Diff-in-diff is a special 
case of panel fixed-
effects regression that 
allows for a very nice 
indirect test.  
  
Why is it possible?



How do you test the 
CIA? (2) 
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Transparent indirect tests of 
the CIA: a characteristic of 
my favorite research designs. 

e.g. regression discontinuity 
designs (RDD) (at right: 
Lee (2008), “Randomized 
experiments from non-
random selection in U.S. 
House elections”)
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What do these cases have in common? The fact that we slightly extend the 
CIA and test the additional implications. 
  
• Diff-in-diff:  

• CIA: Parallel trends assumption applies between pre- and post-treatment 
(i.e. potential outcomes are same for treatment group and control group 
post-treatment, after adjusting for time-invariant difference)  

• Extension to CIA: Parallel trends assumption should apply between pre-pre-
treatment and pre-treatment period too 

• RDD:  
• CIA: At 0% threshold of vote share margin, potential outcomes are 

independent of treatment status (i.e. difference in outcomes between 
winners and losers of dead heat is due to treatment)   

• Extension to CIA: At 0% threshold of vote share margin, pre-treatment 
covariates should also be independent of treatment status    
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• Generalization of diff-in-diff (panel fixed effects design):  
• CIA: No time-variant unit specific confounders  
• Extension to CIA: When including dummies for “2 years before treatment”, “1 

year before treatment”, etc in regression, lagged treatment has no effect (see 
Kuziemko & Werker 2006 for example; also MHE 237-238)  

General pattern:  
• does something that should have no effect have an effect (“placebo”)  
• does treatment affect something it shouldn’t? (“placebo outcome”, falsification 

test) 

As we add complexity from simple diff-in-diff (esp when we go beyond binary 
treatment), testing the CIA becomes harder and harder.   

A problem with transparent designs: You get asked for placebo tests! 



Wrapping up
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If there are unobserved confounders, but you think they may be fixed 
within groups (or within units over time), fixed effects (or first 
differences) can help. 

All causal inference requires a conditional independence assumption. 

If panel methods are especially credible, it is because 
• CIA may be particularly credible within units over time 
• some cases (e.g. simple diff-in-diff) allow for transparent indirect tests 

of CIA 

Next time: lagged dependent variables, synthetic control method, random 
effects, standard errors (or a subset) 


