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What are we talking about!?

Generally, we're talking about
* causal inference (cf descriptive, predictive analysis)
=> we focus on a single treatment that varies across units

* for grouped data, e.g.
e multiple classrooms, each with many students

* multiple judges, each deciding many cases
* multiple countries, each with several years of data (or; multiple
years, each with multiple countries)

=> counterfactuals can be drawn from comparison with same
group (“‘within” or “fixed-effect” estimator), comparison across
groups (“‘between” estimator), both (“random effects”)

=> challenges with inference: basically, clustered sampling



Goals

Focus on intuition & connections among research designs.
* What analysis to run in your own research

* What results really mean

* What questions to ask about other people’s research

* How to answer questions about research design through
simulation

Not:

e A set of commands to run

* A set of rules to follow

* A set of formulas to memorize



Applying what we learn

What dataset and research question have you brought?
* What is the structure of dataset! What are the groupings?

* What is the main independent variable of interest (i.e.
treatment)! What values does it take?

* What is your question? Why is it important and
interesting?



John Snow and cholera

Three main ways of linking
cholera to water supply:

* Mapping deaths in relation to
pumps

* Comparing death rates in
residences in the same area

supplied by different water
companies

* A diff-in-diff!




The first diff-in-diff?

Source: John Snow (1855), On the communication of
cholera

In 1852, the Lambeth Company changed the source of
its water from Hungerford Bridge to Thames Ditton.

Twethortam >

TABLE XII.
Deaths | Deaths
from frem
Sub-Districta, Cholera | Cholera Water Supply.
in 1519, | In 1204,

St. Saviour, Southwark . | 253 371
8t. Olave 5 157 161
St. John, Horsloydown . | 192 | 148
St. James, Bermondsey . | 240 362
St. Mary ‘hgdnlcn 250 244
Leather Market 226 237
Rotherhithe® 352 952 | Southwark & Vaux-
Wandsworth . 97 59 | hall Company only.
Battersea 111 171
Putuey . . . 8 9
Camberwell . 235 240
Pockbam . 92 | 174
Christchurch, Southnrk 26 | 113
Kent Road . N 267 | 174
Borough Road 312 | 270
London Road 257 93
Trinity, Newington 318 ‘ 210
St. Peter, Walworth 446 | 388 | ramboth Com
St. Mary, Newington 143 = 92 and Southwark a
Waterloo Road (1st) 193 | &8 Yauxhall (..ompy
Waterloo Road (2nd) . 43 | 17
Lambeth Church (1st) . | 215 49
Lambeth Church (2nd). | 544 | 193
Kennington (luz; . 187 l 303
Kennington (2nd) 153 142
Brixton 51 48
Clapham . 14 | 165
St. George, Camberwell | 176 132
Norwood 2 10
Streatham 154 15 | Lambeth Company
Dulwich 1 —_ only.
Sydenham 5 12
First 12 sub-districts 2261 | 2458 | Southwk.& Vauxhall.
Next 16 sub-districts 3005 | 2547 | Both Companies.
Last 4 sub-districts 162 37 | Lambeth Company.




Starting point: randomized experiment

NTERVENT

Population is splitinto 2 Outcomes for both

groups by random lot groups are measured
o
' = looking for work = found work

Figure 1. The basic design of a randomised controlled trial (RCT),
illustrated with a test of a new ‘back to work’ programme.

Behavioural Insights Team, “Test, Learn, Adapt”



Formalizing via potential outcomes framework

For unit i (e.g. a country), outcome y; (e.g.
trade), and treatment d; (e.g. membership in
WTO), consider two potential outcomes:

y1i: the amount of trade in country 2 if
country 2 were a member of the WTO

yoi: the amount of trade in country 2 if
country 7 were not a member of the

WTO

Alternative notation: yi(1), yi(0)

Effect of treatment for unit i: y1i- Yo

Fundamental problem
of causal inference
(Holland 1986): we never
observe both potential
outcomes for any single
unit — necessary to
make assumptions and
infer effects from
comparisons across
units.



Causal inference as a missing data problem

What we want;

Country Voi Vii Effect
A $1 billion $1.2 billion $.2 billion

What we have:

Country Voi Vii Effect
A $1 billion ? ?
B ? $0.5 Dbillion ?
C ? $8 billion ?
D $3 billion ? ?
E 7 $3.5 billion ?




What about simply comparing treated and untreated units?

Given a sample, we can always calculate
Blyui|di=1] - Elyoi|di=0]

Under what assumptions will this tell us what we want to
know!?

If we want to report the difference in trade between WTO
members and non-members, no further assumptions needed.

But what if we want to report the effect of WTO membership
on trade for current members, i.e.“average treatment effect
for the treated™?

ATT = E[y11|di=1] - E[y()i’di=1]



What about simply comparing treated and untreated units?

The difference in means
Blyui|di=1] - Elyoi|di=0]
can be rewritten as
Bly|di=1] - Elyoi|di=1] + E[yoi/di=1] - E[yoi|di=0]
e e —. e
ATT Selection bias

So the difference in means gives us the ATT if
BE[yoi|di=1] = E[yoi|di=0]
Elyoi|di] = Elyoi
yoi | di

’’’’

“exogeneity”’. Also: conditional versions.



The advantages of experiments

Consider the unconfoundedness assumption:
E[yoi‘di=1] = E[ym\di:O] 1.e. Voi Ldi

* i.e.,,“control group offers valid counterfactual for treatment group”

e i.e.,“countries that are not members of the WTO tell us what trade would be like

on average in countries that are members of the WTO if those countries were
not in the WTO”

When will
unconfoundedness hold?

Population is splitinto 2 Outcomes for both

groups by random lot groups are measured

One case: when treatment
(WTO membership) is
randomly assigned.

' = looking for work ' = found work

Figure 1. The basic design of a randomised controlled trial (RCT),
illustrated with a test of a new ‘back to work’ programme.




Recipe:
(1) Generate both potential

outcomes for a set of units
according to

xi ~ N(0,1)
yoi ~ N(x;,1)
yi ~ N(x + T, 1)
T=1
(2) Assign treatment (d) randomly
(3) Estimate ATT (effect of d on y)
by
(32) Difference-in-means:

average difference in observed y
between treated and control units

(3b) Regression of observed y on
x and d

(4) Repeat from step |

yl

Simulation |: random
assignment

Is the unconfoundedness assumption
met in this case’
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Simulation | (random assignment): distribution of
estimates across replications

Regression of y on
d, controlling for x
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Recipe:
(1) Generate both potential outcomes
as in Simulation |:

x; ~ N(0,1)
yoi ~ N(x;,1)
yi ~ N(x + 7, 1)
=1
(2)* Assign treatment according to
Pr(di=1) =1/(1 + exp(-xi))

(3) Estimate ATT (effect of d on y) as in
Simulation |:

(3a) Difference-in-means: average
difference in observed y between
treated and control units

(3b) Regression of observed y on x
and d

(4) Repeat from step |

Simulation 2: non-random assignment
_ (Logistic function)

Is the
unconfoundedness
assumption met in
this case?

Probabity of treatment

yi

(Dashed lines:
avg potential
outcomes
within groups)

¢ Control

Treatment
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Simulation 2 (non-random assignment):
distribution of estimates across replications

Regression of y on
d, controlling for x

Difference-in-means

beoween trestment and Difference-in-means now produces
control group .
biased results. Why?

We call x a covariate or confounder.

What are some possible confounders
in

* the WTO example!?
* the cholera example!?

I % 1 1 | ] 1
0.8 1.0 1.2 14 16 18 20

Estimated ATT



X Z confounder,
lurking variable,
covariate)

—

—
(D, X, treatment, (Y, outcome,
independent dependent
variable) variable)
— —
WTO Trade or
membership »| deaths from
or clean water cholera

What about when we don’t observe an important covariate/confounder? (From here we
assume x not observed — what covariates are likely to be unobserved in the WTO
example?! the cholera example?)

Our options:

* run an experiment (when you can)

* instrumental variables (when there is an instrument)

* RDD: unconfounded at a cutoff (when there is a cutoff)

diff-in-diff and other panel methods (when confounding variables are time-invariant)

sensitivity analysis/bounds



Recipe:
(1)* Same data generating process (DGP) as above, but Simulation 3: random
adding a baseline outcome and time trend: assignment with baseline

x; ~ N(0, 1) (pre-treatment) outcomes

YOi,post ~ N(Xi + }\) 1)
Y1i,post ~ N(Xi + A + T, 1)

» Control (d=0)
— 1 Treatment (d=1)
A:O_B p c.".. ) » -. -
"é 3 ‘.'"".'73.":‘:“
. . . . S L
(2) Assign treatment randomly (as in Simulation 1) g iy .,.;..!c'.‘?-‘s;“'
(3)* Four ways of estimating ATT: g 3 S e e
2 o "’S‘?" X
(3a) Difference-in-means: average difference in 8 i.:\?::f:’-).‘.#\.s
observed y between treated and control units N RS X $:40

(3b) Regression of observed y on baseline outcome
(Yi,pre) and d T - : . l :
(3c)* Before-and-after: average change over time -4 2 0 2 ‘
(E[¥ipost - Yipre]) in treatment group Baseline

(3d)* Diff-in-diff: Difference in before-and-after
between treated and control units

(4) Repeat from step |




Simulation 3 (random assignment with baseline outcomes):
distribution of estimates

Do these results make sense?

© | Purple:
| Regression Before-and-after
: controlling for in treatment
baseline (3b) group (3¢)
© -1 Black: Diff-
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Estimated ATT



Recipe:

(1) Same data-generating process (DGP) as Simulation
3:

x; ~ N(0, 1)

Yipre ~ N(x;, 1)
Yoipost ~ N(Xi + A, 1)
Y1ipost ~ N(x +A+71)
=1
A=0.5

(2)* Assign treatment as in Simulation 2:
Pr(di=1) = 1/(1 + exp(-xi))

(3) Same four ways of estimating ATT as in Simulation 3:

(3a) Difference-in-means: average difference in
observed y between treated and control units

(3b) Regression of observed y on baseline outcome
(Yi,pre) and d

(3¢) Before-and-after: average change over time
(E[Yi,post - Yipre]) in treatment group

(3d) Diff-in-diff: Difference in before-and-after
between treated and control units

(4) Repeat from step |

Simulation 4: non-
random assignment with
pre-treatment outcomes

» Control (d=0)
Treatment (d={l)
v p—
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Simulation 4 (non-random assignment with baseline
outcomes): distribution of estimates

Do these results make sense?

Density

(eo}

—y

Before-and-after
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'
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: Regression Simple difference

: (3b) between
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Estimated ATT



Recipe:

(1)* Same DGP as Simulation 3 except time trend depends
on X:

x; ~ N(0,1)
Yipre ~ N(x;,1)
Yoipost ~ N(x*(14 1),1)
Y1ipost ~ N(x*(1+A) + 1,1

T=1

A=0.5
(2) Assign treatment as in Simulations 2 & 4:
Pr(d=1) = 1/(1 + exp(-x;))
(3) Same four ways of estimating ATT as in Simulations 3 &
4:

(3a) Difference-in-means: average difference in observed
y between treated and control units

(3b) Regression of observed y on baseline outcome

(Yi,pre) and d
(3c) Before-and-after: average change over time
(E[Yi,post - Vi,pre]) in treatment group

(3d) Diff-in-diff: Difference in before-and-after between
treated and control units

(4) Repeat from step |

Observed outcome

Simulation 5: non-random
assighment with pre-
treatment outcomes (v2)

¢ Control (d=0)
© < + Treatment (d=1)

Baseline



Simulation 5 (non-random assignment with baseline
outcomes, v2): distribution of estimates

Why does diff-in-diff fail now?

,  Before-and-after

@ 711 in treatment :
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Estimated ATT



Why and when diff-in-diff works

Informally:

* Diff-in-diff is potentially useful
when
* binary treatment vs control
 treatment and control group
differ even in the absence of

treatment (e.g. in the pre-
treatment period)

* Diff-in-diff works when the baseline
difference between the treatment
and control group is constant over
time (parallel trends assumption).

Parallel trends assumption:
E[YOi,post - YOi,pre|di:1] = E[YOi,post - YOi,pre‘diZO]

t t

Change over time in potential Change over time in potential
outcome for treated outcome for control

Parallel trends assumption

E [y1i,post| di= 1]

E[yli,post ) in,post
(ATT)

o
E [YOi,postl di= 1]

E[yoipre|di=1] E[yoipost|di=0]

E [y0i,pre|di=0]

d;=1]



Recall decomposition of difference Diff-in-diff and selection bias
in means:

Elyu|di=1] - E[yi0|di=0] = Parallel trends assumption
BElyii|di=1] - E[yio|di=1] 4
(ATT)

+ Elyio|di=1] - Elyio|di=0]
(selection bias)

E [y1i,post| di= 1]

E[ jd=1]

y1i,post ) in,post
(ATT)

Under parallel trends assumption,
diff-in-diff is:

E [y0i,pre | di= 1] E [y0i,post| di=0]
Difference in means post-treatment

4 : :
(ATT + selection bias) E[yoipre|di=0]
minus

E [YOi,postl di= 1]

Difference in means pre-treatment

(selection bias) t=0 t=1



Two useful ways of thinking about the diff-in-diff

(E[Yli,pOSt’di:]-] - E[YOi,pre’di:]-]) - (E[YOi,post’di:O] - E[YOi,pre’di:O])

(Before-and-after in treatment group) - (Before-and-after in control group)

“We subtract the before-and-after in a control group because (under the parallel
trends assumption) it tells us what would have happened over time in the treatment

group in the absence of the treatment.”

(E[y1i,post|di=1] - E[yoi,post|di=0]) - (E[yo0ipre|di=1] - E[yoi,pre|di=0])

(Treatment-control diff. after) - (Treatment-control diff. before)

“We subtract the treatment-control difference before the treatment was applied
because (under the parallel trends assumption) it tells us the baseline difference
between the two groups even in the absence of the treatment (selection bias).”

26



The parallel trends assumption cannot be directly tested
Consider simulations 4 and 5, where we observe the potential outcomes.

Simulation 4 Simulation 5

E[Yi,postldi:l] E[y |d _1]
i,post| Ui—

Open circle: assumed counterfactyal
under parallel trends assumption

-®
Blue dot: true counterfactual Blue dot: true counterfactual

E[Yi,preld‘i;ﬂ Te-—a } Bias

E[yipre|di=1] - o
E[ipost]di=0] N
Yipost| i E d:=0 Open circle: assumed counterfactual
[yi,pr6| i— ] under parallel trends assumption

E[¥ipost|di=0]

1 =0 t

t=0 t 1



But we can check if trends are parallel in other periods

Parallel trends assumption looks good Parallel trends assumption looks bad

A A




Applying and implementing the diff-in-diff

Research question: Did the 2001 Elbe flood make its victims more
supportive of the SPD government (due e.g. to its vigorous response)?

Figure 3: The Elbe Valley: Before the Flood 2001 and During the Flood 2002
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Applying and implementing the diff-in-diff

The units are (SMD) electoral districts in Germany.
* What is the treatment!?

* What is the outcome? What are the pre- and post-
treatment periods!?

* Name some possible confounding variables.

* What might be wrong with a simple difference-in-
means! The before-and-after?

* What is the parallel trends assumption behind the
diff-in-diff in this case!? Why might it not be satisfied?



Estimating the diff-in-diff: group means version

Simply calculate mean vote share for SPD in pre- and post-treatment
period for flooded and non-flooded districts; subtract to get diff-in-diff.

. import delimited 1998_2002

(35 vars, 598 obs)

. =%#%% TSCS versions
. = group means version

. mean spd_z_vs, over(postperiod flooded)

spd z vs: SPD vote share in
district

postperiod: 1 if 2002, 0 if
1998

flooded: 1 if district was
flooded in 2001, 0 if not

Mean estimation Number of obs 598
Over: postperiod flooded
_subpop_1: 0 @
_Subpop_2: 0 1
_subpop_3: 1 0
_Subpop_4: 1 1
Over Mean Std. Err. [95% Conf. Interval]
spd_z_vs
_Subpop_1 41.70632 .4744889 40.77445 42.63819
_Subpop_2 33.02612 1.116933 30.83253 35.21972
_Subpop_3 38.82595 .5270443 37.79086 39.86104
_Subpop_4 37.28977 1.109351 35.11107 39.46848

(37.3-33.02)-(38.8-41.7)
= 7.18




Plotting the diff-in-diff
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Assessing the parallel trends assumption

® Districts Affected by Flood
" = Districts Unaffected by Flood
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Estimating the diff-in-diff: interactions version

Convenient way to estimate the same thing in a regression:

. * interactions version, with clustering by district
= floodedxpostperiod

. gen postflood

regress spd_z_vs flooded postperiod postflood, cl(wkr)

wkr:

id for electoral district

Linear regression Number of obs = 598
F( 3, 298) = 99.02
Prob > F = 0.0000
R-squared = 0.0666
Root MSE = 8.,0548
(Std. Err. adjusted for 299 clusters in wkr)

Robust
spd_z_vs Coef. Std. Err. t P>t [95% Conf. Interval]
flooded ~-8.6801%4 1.200359 -7.23 0.000 -11.04245 -6.317939
postperiod -2.880367 .2281177 -12.63 0.000 -3.329293 -2.431441
postflood 7.144014 .4685778 15.25 0.000 6.221874 8.066155
_cons 41.70632 .4755999 87.69 0.000 40.77036 42.64228

Here, clustering standard errors
because districts appear more
than once. (How much data do
we have if pre- and post- are
separated by 20 minutes?)

See MHE section 8.1 and 8.2 for
more on clustering.



Panel vs repeated cross-section

Everything so far applies to both

 repeated cross-sectional datasets (i.e. datasets where the
specific units being surveyed change from time period to
time period)

* panel datasets (i.e. datasets where the same units appear in
each period)

If we have a panel, we can use other approaches that often
yield more precise estimates.



Estimating the diff-in-diff: LSDV version

Least squares dummy variable model: Regress outcome on
treatment and year, including a dummy for each each unit.

. xi: regress spd_z_vs postperiod postflood i.wkr, cl(wkr)

i.wkr _Iwkr_1-299 {naturally coded; _Iwkr_1 omitted)

Linear regression Number of obs = 598

F{ 1, 298) =
Prob > F = -
R-squared = 0.9528
Root MSE = 2.5629
(Std. Err. adjusted for 299 clusters in wkr)

Robust

spd_z_vs Coef. Std. Err. t P>t] [95% Conf. Intervall
postperiod -2.880367 .3226071 -8.93 0.000 -3.515244 -2.24549
postflood 7.144014 .6626691 10.78 ©.000 5.83991 8.448118
_Iwkr_2 -2.633802 2.84e-12 -9.3e+11 0.000 -2.633802 -2.633802
_Iwkr_3 -2.668777 2.84e¢~12 -9.4e+11 0.000 -2.668777 -2.668777
_Iwkr_4 ~1.818636 2.84e~-12 ~6.4e+11 0.000 ~1.818636 ~-1.818636
Iwkr_5 .6821861 2.84e-12 2.4e+11 0.000 .6821861 .6821861
_Iwkr_6 .3288879 2.84e-12 1.2e+11 0.000 .3288879 .3288879
_Iwkr_296 3.327847 2.84e~12 1.2e+12 0.0080 3.327847 3.327847
_Iwkr_297 3.345711 2.84e-12 1.2e+12 0.000 3.345711 3.345711
_Iwkr_298 3.293018 2.84e-12 1.2e+12 0.000 3.293018 3.293018
_Iwkr_299 4.427282 2.84e-12 1.6e+12 0.000 4.427282 4.427282
_cons 47.04176 .1613036 291.63 0.000 46.72432 47.13592




Intuition for the LSDV version

Parallel trends assumption required that difference between
treatment and control groups is constant over time in the
absence of treatment.

In interaction version, treatment and control groups get their
own intercepts.

In LSDV version, all units get their own intercept.

(Note: Parallel trends assumption could apply at the group
level even if it does not apply at the individual level.)



Estimating the diff-in-diff: areg version

Stata’s areg command lets us run LSDV while suppressing the
coefficients on the dummy variables:

. areg spd_z_vs postperiod postflood, cl(wkr) absorb(wkr) /% exactly the same as LSDVx/

Linear regression, absorbing indicators Number of obs = 598
F( 2, 298) = 66.99
Prob > F = 0.0000
R-squared = 9.9528
Adj R-squared = 0.9050
Root MSE - 2.5629

(Std. Err. adjusted for 299 clusters in wkr)

Robust
spd_z_vs Coef. Std. Err. t P>|t| [95% Conf. Interval]
postperiod -2.880367 .3226071 -8.93 0.000 -3.515244 -2.24549
postflood 7.144014 .6626691 10.78 0.000 5.83991 8.448118
_cons 40.86443 .1483389 275.48 0.000 40.5725 41.15635
wkr absorbed (299 categories)



Estimating the diff-in-diff: fixed effects version

(We’ll talk more about fixed effects next week.)

. Xtset wkr postperiod /= wkr: election district; postperiod: after x/
panel variable: wkr (strongly balanced)
time variable: postperiod, @ to 1
delta: 1 unit

. Xtreg spd_z_vs postperiod postflood, cl(wkr) fe

Fixed-effects (within) regression Number of obs = 598
Group variable: wkr Number of groups = 299
R=sq: within = 0.4150 Obs per group: min = 2
between = 0.0360 avg = 2.0
overall = 0.0022 max = 2
F(2,298) = 134.20

corr{u_i, Xb) = -0.1781 Prob > F = 0.0000

(Std. Err. adjusted for 299 clusters in wkr)

Robust
spd_z_vs Coef. Std. Err. t P>|t| [95% Conf. Interval]
postperiod -2.880367 L2279259 -12.64 0.000 -3.328915 -2.431819
postflood 7.144014 .4681839 15.26 0.000 6.222649 8.06538
_cons 40.86443 .1048033  385.92 0.000 40.65818 41.07067

sigma_u 8.2468683
sigma_e 2.5628706
rho .91192838 (fraction of variance due to u_1i)




Estimating the diff-in-diff: first-differences version

. drop postflood

. keep spd_z_vs flooded wkr postperiod

. reshape wide spd_z vs,

(note: § =9 1)

i(wkr) j(postperiod)

Data long -> wide
Number of obs. 598 -> 299
Number of variables - - “
j variable (2 values) postperiod - (dropped)

xij variables:

spd_z_vs ->

spd_z_vs® spd_z_vsl

. gen change_spd_vs = spd_2z_vsl - spd_z_vs®

. regress change_spd_vs flooded

Source ss df MS Number of obs = 299

F{ 1, 297) = 101.74

Model 1336.51922 1 1336.51922 Prob > F = 0.0000
Residual 3901.57368 297 13.1366117 R-squared » 9.2552

Adj] R-squared = 0.2526

Total 5238.0929 298 17.577453 Root MSE = 3.6244
change_spd~s Coef. Std. Err t P>|t| [95% Conf. Intervall
flooded 7.144014 . 708266 i0.29 @0.000 5.750159 8.53787
_cons -2.880367 ,2205768 -13.06 0.000 ~3.314458 -2,446276

Intuition: testing whether, at
the district level, SPD vote
share increased more

1998-2002 in flooded
districts than others.



Next week

Homework: Apply these techniques to Snow’s cholera diff-in-
diff.

Next week: From randomized experiments to fixed effects:
different route to same techniques, with broader application.



