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What are we talking about?

2

Generally, we’re talking about
• causal inference (cf descriptive, predictive analysis)

=> we focus on a single treatment that varies across units 
• for grouped data, e.g. 

• multiple classrooms, each with many students
• multiple judges, each deciding many cases
• multiple countries, each with several years of data (or, multiple 

years, each with multiple countries)
=> counterfactuals can be drawn from comparison with same 
group (“within” or “fixed-effect” estimator), comparison across 
groups (“between” estimator), both (“random effects”) 
=> challenges with inference: basically, clustered sampling



Goals
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Focus on intuition & connections among research designs.
• What analysis to run in your own research
• What results really mean
• What questions to ask about other people’s research
• How to answer questions about research design through 

simulation  

Not: 
• A set of commands to run
• A set of rules to follow
• A set of formulas to memorize



Applying what we learn
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What dataset and research question have you brought?
• What is the structure of dataset? What are the groupings?
• What is the main independent variable of interest (i.e. 

treatment)? What values does it take? 
• What is your question? Why is it important and 

interesting? 



John Snow and cholera
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Three main ways of linking 
cholera to water supply:  

• Mapping deaths in relation to 
pumps

• Comparing death rates in 
residences in the same area 
supplied by different water 
companies

• A diff-in-diff!  



The first diff-in-diff?
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Source: John Snow (1855), On the communication of 
cholera

In 1852, the Lambeth Company changed the source of 
its water from Hungerford Bridge to Thames Ditton.



Starting point: randomized experiment

7Behavioural Insights Team, “Test, Learn, Adapt”



Formalizing via potential outcomes framework

8

For unit i (e.g. a country), outcome yi (e.g. 
trade), and treatment di (e.g. membership in 
WTO), consider two potential outcomes: 

y1i: the amount of trade in country i if 
country i were a member of the WTO 
y0i: the amount of trade in country i if 
country i were not a member of the 
WTO 

Alternative notation:   yi(1), yi(0)  

Effect of treatment for unit i:  y1i - y0i

Fundamental problem 
of causal inference 
(Holland 1986): we never 
observe both potential 
outcomes for any single 
unit → necessary to 
make assumptions and 
infer effects from 
comparisons across 
units. 



Causal inference as a missing data problem 
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What we want: 

Country y0i y1i Effect

A $1 billion $1.2 billion $.2 billion

What we have: 

Country y0i y1i Effect
A $1 billion ? ? 
B ? $0.5 billion ?
C ? $8 billion ?
D $3 billion ? ?
E ? $3.5 billion ?



Given a sample, we can always calculate
E[y1i|di=1] - E[y0i|di=0] 

Under what assumptions will this tell us what we want to 
know?

If we want to report the difference in trade between WTO 
members and non-members, no further assumptions needed.   

But what if we want to report the effect of WTO membership 
on trade for current members, i.e. “average treatment effect 
for the treated”? 

ATT = E[y1i|di=1] - E[y0i|di=1]

What about simply comparing treated and untreated units?
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The difference in means
E[y1i|di=1] - E[y0i|di=0] 

can be rewritten as
E[y1i|di=1] - E[y0i|di=1] + E[y0i|di=1] - E[y0i|di=0]

What about simply comparing treated and untreated units?
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The “independence assumption”, “unconfoundedness”, “ignorability”, 
“exogeneity”.  Also: conditional versions.

ATT

So the difference in means gives us the ATT if
E[y0i|di=1] = E[y0i|di=0] 

E[y0i|di] = E[y0i] 
y0i ⏊di

Selection bias



The advantages of experiments
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Consider the unconfoundedness assumption: 
E[y0i|di=1] = E[y0i|di=0]   i.e. y0i ⏊di 

• i.e., “control group offers valid counterfactual for treatment group” 

• i.e., “countries that are not members of the WTO tell us what trade would be like 
on average in countries that are members of the WTO if those countries were 
not in the WTO”

When will 
unconfoundedness hold?

One case: when treatment 
(WTO membership) is 
randomly assigned.



Simulation 1: random 
assignment
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Recipe:
(1) Generate both potential 
outcomes for a set of units 
according to 

xi ∼ N(0,1) 
y0i ∼ N(xi,1) 

y1i ∼ N(xi + 𝝉, 1) 
𝝉=1 

(2) Assign treatment (d) randomly
(3) Estimate ATT (effect of d on y) 
by

(3a) Difference-in-means: 
average difference in observed y 
between treated and control units
(3b) Regression of observed y on 
x and d

(4) Repeat from step 1

Is the unconfoundedness assumption 
met in this case? 

(Dashed lines: 
avg potential 
outcomes 
within groups)



Simulation 1 (random assignment): distribution of 
estimates across replications
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Regression of y on 
d, controlling for x

Difference in means 
between treatment 
and control group



Simulation 2: non-random assignment
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(Dashed lines: 
avg potential 
outcomes 
within groups)

Is the 
unconfoundedness 
assumption met in 
this case? 

(Logistic function)

Recipe:
(1) Generate both potential outcomes 
as in Simulation 1: 

xi ∼ N(0,1) 
y0i ∼ N(xi,1) 

y1i ∼ N(xi + 𝝉, 1) 
𝝉=1 

(2)* Assign treatment according to

Pr(di=1)  =  1/(1  +  exp(-­‐xi))  
(3) Estimate ATT (effect of d on y) as in 
Simulation 1:

(3a) Difference-in-means: average 
difference in observed y between 
treated and control units
(3b) Regression of observed y on x 
and d

(4) Repeat from step 1



Simulation 2 (non-random assignment): 
distribution of estimates across replications
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Difference-in-means now produces 
biased results. Why?

We call x a covariate or confounder.

What are some possible confounders 
in
• the WTO example? 
• the cholera example?

Difference-in-means 
between treatment and 
control group

Regression of y on 
d, controlling for x
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WTO 
membership

or clean water

Trade or 
deaths from 

cholera

?
(D, X, treatment, 

independent 

variable)

(X, Z, confounder,

lurking variable, 

covariate)

(Y, outcome, 
dependent 
variable)

What about when we don’t observe an important covariate/confounder? (From here we 
assume x not observed —  what covariates are likely to be unobserved in the WTO 
example? the cholera example?) 

Our options:  
• run an experiment (when you can)
• instrumental variables (when there is an instrument)
• RDD: unconfounded at a cutoff (when there is a cutoff)  
• diff-in-diff and other panel methods (when confounding variables are time-invariant)
• sensitivity analysis/bounds 



Simulation 3: random 
assignment with baseline 
(pre-treatment) outcomes 

Recipe:
(1)* Same data generating process (DGP) as above, but 
adding a baseline outcome and time trend: 

xi ∼ N(0, 1) 
yi,pre ∼ N(xi, 1) 

y0i,post  ∼ N(xi + λ, 1) 
y1i,post ∼ N(xi + λ + 𝝉, 1) 

𝝉=1 
λ=0.5 

(2) Assign treatment randomly (as in Simulation 1)
(3)* Four ways of estimating ATT: 

(3a) Difference-in-means: average difference in 
observed y between treated and control units
(3b) Regression of observed y on baseline outcome 
(yi,pre)  and d
(3c)* Before-and-after: average change over time 
(E[yi,post  -­‐  yi,pre]) in treatment group  
(3d)* Diff-in-diff: Difference in before-and-after 
between treated and control units  

(4) Repeat from step 1



Simulation 3 (random assignment with baseline outcomes): 
distribution of estimates

Do these results make sense? 

Purple: 
Regression 
controlling for  
baseline (3b)

Orange: Diff-in-
means (3a)

Before-and-after 
in treatment 
group (3c)

Black: Diff-
in-diff (3d)



Simulation 4: non-
random assignment with 
pre-treatment outcomes

Recipe:
(1) Same data-generating process (DGP) as Simulation 
3: 

xi ∼ N(0, 1) 
yi,pre ∼ N(xi, 1) 

y0i,post  ∼ N(xi + λ, 1) 
y1i,post ∼ N(xi + λ + 𝝉, 1) 

𝝉=1 
λ=0.5 

(2)* Assign treatment as in Simulation 2: 
Pr(di=1) = 1/(1 + exp(-xi)) 

(3) Same four ways of estimating ATT as in Simulation 3: 
(3a) Difference-in-means: average difference in 
observed y between treated and control units
(3b) Regression of observed y on baseline outcome 
(yi,pre)  and d
(3c) Before-and-after: average change over time 
(E[yi,post  -­‐  yi,pre]) in treatment group  
(3d) Diff-in-diff: Difference in before-and-after 
between treated and control units  

(4) Repeat from step 1



Before-and-after 
in treatment 
group (3c)

Diff-in-diff 
(3d)

Regression 
(3b)

Simple difference 
between 
treatment and 
control (3a)

Simulation 4 (non-random assignment with baseline 
outcomes): distribution of estimates

Do these results make sense? 



Simulation 5: non-random 
assignment with pre-
treatment outcomes (v2)

Recipe:
(1)* Same DGP as Simulation 3 except time trend depends 
on x: 

xi ∼ N(0,1)  
yi,pre ∼ N(xi,1) 

y0i,post ∼ N(xi*(1+ λ),1) 
y1i,post ∼ N(xi*(1 + λ) + 𝝉,1) 

𝝉 = 1 
λ=0.5 

(2) Assign treatment as in Simulations 2 & 4: 
Pr(di=1) = 1/(1 + exp(-xi)) 

(3) Same four ways of estimating ATT as in Simulations 3 & 
4: 

(3a) Difference-in-means: average difference in observed 
y between treated and control units
(3b) Regression of observed y on baseline outcome 
(yi,pre)  and d
(3c) Before-and-after: average change over time 
(E[yi,post - yi,pre]) in treatment group  
(3d) Diff-in-diff: Difference in before-and-after between 
treated and control units  

(4) Repeat from step 1



Before-and-after 
in treatment 
group (3c)

Diff-in-diff 
(3d)

Regression 
(3b)

Simple difference 
between 
treatment and 
control (3a)

Simulation 5 (non-random assignment with baseline 
outcomes, v2): distribution of estimates

Why does diff-in-diff fail now?



Why and when diff-in-diff works

Informally: 
• Diff-in-diff is potentially useful 

when 
• binary treatment vs control
• treatment and control group 

differ even in the absence of 
treatment (e.g. in the pre-
treatment period)

• Diff-in-diff works when the baseline 
difference between the treatment 
and control group is constant over 
time (parallel trends assumption). 

t  =  0 t  =  1

E[y1i,post  -­‐  y0i,post|di=1]

E[y0i,post|di=1]

E[y0i,post|di=0]

E[y0i,pre|di=0]

E[y0i,pre|di=1]

E[y1i,post|di=1]

(ATT)

Parallel trends assumption

Parallel trends assumption: 
E[y0i,post - y0i,pre|di=1] = E[y0i,post - y0i,pre|di=0]

Change over time in potential 
outcome for treated

Change over time in potential 
outcome for control



Diff-in-diff and selection biasRecall decomposition of difference 
in means:

E[yi1|di=1] - E[yi0|di=0] =  
E[yi1|di=1] - E[yi0|di=1]            
(ATT)  
+ E[yi0|di=1] - E[yi0|di=0]         
(selection bias) 

Under parallel trends assumption, 
diff-in-diff is: 

Difference in means post-treatment
(ATT + selection bias)

minus
Difference in means pre-treatment 

(selection bias) t  =  0 t  =  1

E[y1i,post  -­‐  y0i,post|di=1]

E[y0i,post|di=1]

E[y0i,post|di=0]

E[y0i,pre|di=0]

E[y0i,pre|di=1]

E[y1i,post|di=1]

(ATT)

Parallel trends assumption



Two useful ways of thinking about the diff-in-diff
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(E[y1i,post|di=1] - E[y0i,pre|di=1]) - (E[y0i,post|di=0] - E[y0i,pre|di=0]) 

(Before-and-after in treatment group) - (Before-and-after in control group)

“We subtract the before-and-after in a control group because (under the parallel 
trends assumption) it tells us what would have happened over time in the treatment 
group in the absence of the treatment.”   

(E[y1i,post|di=1] - E[y0i,post|di=0]) - (E[y0i,pre|di=1] - E[y0i,pre|di=0]) 

(Treatment-control diff. after) - (Treatment-control diff. before)

“We subtract the treatment-control difference before the treatment was applied 
because (under the parallel trends assumption) it tells us the baseline difference 
between the two groups even in the absence of the treatment (selection bias).”



The parallel trends assumption cannot be directly tested

Consider simulations 4 and 5, where we observe the potential outcomes.

Simulation 4 Simulation 5

E[yi,post|di=1]
E[yi,post|di=1]

E[yi,post|di=0]

E[yi,post|di=0]

E[yi,pre|di=0]

E[yi,pre|di=1]

E[yi,pre|di=0]

E[yi,pre|di=1]

Open circle: assumed counterfactual 
under parallel trends assumption

Blue dot: true counterfactual

Open circle: assumed counterfactual 
under parallel trends assumption

Blue dot: true counterfactual

Bias



But we can check if trends are parallel in other periods

t  =  0 t  =  1

Parallel trends assumption looks good

t  =  -­‐1t  =  -­‐2 t  =  0 t  =  1

Parallel trends assumption looks bad

t  =  -­‐1t  =  -­‐2



Applying and implementing the diff-in-diff
Research question: Did the 2001 Elbe flood make its victims more 
supportive of the SPD government (due e.g. to its vigorous response)?



Applying and implementing the diff-in-diff

The units are (SMD) electoral districts in Germany.
• What is the treatment? 
• What is the outcome? What are the pre- and post-

treatment periods? 
• Name some possible confounding variables.
• What might be wrong with a simple difference-in-

means? The before-and-after?
• What is the parallel trends assumption behind the 

diff-in-diff in this case? Why might it not be satisfied?



Estimating the diff-in-diff: group means version

Simply calculate mean vote share for SPD in pre- and post-treatment 
period for flooded and non-flooded districts; subtract to get diff-in-diff.

spd_z_vs: SPD vote share in 
district
postperiod: 1 if 2002, 0 if 
1998
flooded: 1 if district was 
flooded in 2001, 0 if not

 

= (37.3-33.02)-(38.8-41.7) 

= 7.18



Plotting the diff-in-diff

Control units

Treated units

7.18



Assessing the parallel trends assumption



Estimating the diff-in-diff: interactions version

Convenient way to estimate the same thing in a regression:

wkr: id for electoral district

Here, clustering standard errors 
because districts appear more 
than once. (How much data do 
we have if pre- and post- are 
separated by 20 minutes?) 

See MHE section 8.1 and 8.2 for 
more on clustering.



Panel vs repeated cross-section

Everything so far applies to both 
• repeated cross-sectional datasets (i.e. datasets where the 

specific units being surveyed change from time period to 
time period) 

• panel datasets (i.e. datasets where the same units appear in 
each period)   

If we have a panel, we can use other approaches that often 
yield more precise estimates.



Estimating the diff-in-diff: LSDV version
Least squares dummy variable model: Regress outcome on 
treatment and year, including a dummy for each each unit.

……



Intuition for the LSDV version

Parallel trends assumption required that difference between 
treatment and control groups is constant over time in the 
absence of treatment. 

In interaction version, treatment and control groups get their 
own intercepts. 

In LSDV version, all units get their own intercept. 

(Note: Parallel trends assumption could apply at the group 
level even if it does not apply at the individual level.)  



Estimating the diff-in-diff: areg version
Stata’s areg command lets us run LSDV while suppressing the 
coefficients on the dummy variables: 



Estimating the diff-in-diff: fixed effects version
(We’ll talk more about fixed effects next week.)



Estimating the diff-in-diff: first-differences version

Intuition: testing whether, at 
the district level, SPD vote 
share increased more 
1998-2002 in flooded 
districts than others.   



Next week

Homework: Apply these techniques to Snow’s cholera diff-in-
diff.   

Next week: From randomized experiments to fixed effects: 
different route to same techniques, with broader application. 


