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Motivation



Scope

Broadly, sensitivity analysis checks how results depend on assumptions and
choices made in analysis.

Our focus: how sensitive are your conclusions to reasonable amounts of
omitted variable bias?
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Scope (2)

"In an observational study, a sensitivity analysis replaces qualitative claims
about whether unmeasured biases are present with an objective quantitative
statement about the magnitude of bias that would need to be present to
change the conclusions. In this sense, a sensitivity analysis speaks to the
assertion 'it might be bias' in much the same way that a P-value speaks to the
assertion 'it might be bad luck'."

— Paul Rosenbaum, "Two R Packages for Sensitivity Analysis in Observational
Studies", (2015)
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Why do we need sensitivity analysis?

We implicitly do sensitivity analysis all the time.

We want to be more precise.

Effect size is really large: unlikely that such a large effect would be caused by
an omitted variable

-value is really small: unlikely that I would get such a small -value if there
wasn't really an effect

·

· p p
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Classic approaches



The simplest example

"If cigarette smokers have 9 times the risk of nonsmokers for developing lung
cancer, and this is not because cigarette smoke is a causal agent, but only
because cigarette smokers produce hormone X, then the proportion of
hormone-X-producers among cigarette smokers must be at least 9 times
greater than that of nonsmokers."

— Cornfield et al (1959), "Smoking and lung cancer: recent evidence and a
discussion of some questions"

Key point: quantifying the type of bias that would be necessary to explain the
result.
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The simplest example: formally

Notation:

: outcome for unit  (e.g. lung cancer)

: 's exposure to treatment (e.g. smoking)

: 's exposure to some other factor (e.g. hormone )

: rate of  in treated group

: rate of  in control group

· yi i

· ∈ {0, 1}Di i

· ∈ {0, 1}Xi i X

· ≡ Pr( = 1 ∣ = 1)p1 Xi Di = 1Xi

· ≡ Pr( = 1 ∣ = 0)p0 Xi Di = 1Xi

8/50



The simplest example: formally (2)

Assume no effect of treatment and (w/o loss of generality) .

Avg outcome by treatment status:

Rearranging,

>p1 p0

E[ ∣ = 1] = E[ ∣ = 1] + (1 − )E[ ∣ = 0]yi Di p1 yi Xi p1 yi Xi

E[ ∣ = 0] = E[ ∣ = 1] + (1 − )E[ ∣ = 0]yi Di p0 yi Xi p0 yi Xi

=p1

E[ ∣ = 1] − E[ ∣ = 0]yi Di yi Xi

E[ ∣ = 1] − E[ ∣ = 0]yi Xi yi Xi

=p0

E[ ∣ = 0] − E[ ∣ = 0]yi Di yi Xi

E[ ∣ = 1] − E[ ∣ = 0]yi Xi yi Xi
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The simplest example: formally (3)

It follows that

(where last inequality depends on ).

So if rate of death 9 times higher among smokers and smoking does not cause
death, then a confounder that does cause death must be at least 9 times more
prevalent among smokers.

= ≥
p1

p0

E[ ∣ = 1] − E[ ∣ = 0]yi Di yi Xi

E[ ∣ = 0] − E[ ∣ = 0]yi Di yi Xi

E[ ∣ = 1]yi Di

E[ ∣ = 0]yi Di

E[ ∣ = 1] > E[ ∣ = 0]yi Xi yi Xi
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Limitations of simplest example

How can we be more general?

Binary treatment and binary confounder

Ratio of average outcomes (not difference)

No statistical inference (e.g. -values)

·

·

· p
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Review: interpretation of -value

Consider randomized experiment in which treatment is randomly assigned
within matched pairs (block randomization).

Observing outcomes, we measure a test statistic:

We compute a -value under the sharp null hypothesis: Suppose the treatment
has no effect. Under what proportion of randomizations would we observe a
test statistic as large or larger than the one actually observed?

p

difference in means between treatment and control group

Wilcoxon's signed rank statistic

etc

·

·

·

p
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An example (from Rosenbaum 2002)

Hammond (1964) matched 35,975 heavy smokers with non-smokers on the
basis of 18 covariates (age, race, alcohol consumption, occupational exposure
to dust, …)

In 122 pairs, one person died of lung cancer; in 110 of these it was the smoker
who died.

Initial question: What is the probability that it would be the smoker who died
in at least 110 of the pairs if

treatment was randomly assigned, and

smoking does not cause lung cancer?

·

·
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Randomization inference

Equivalently: What is prob. of at least 110 heads in 122 flips?

# Manual approximation 
M <- 1000000  # number of simulations 
nheads_fair_coin <- rep(NA, M)   # for storage 
for(i in 1:M){ 
  samp <- sample(x = c(0,1), size = 122, replace = T, prob = c(.5, .5)) 
  nheads_fair_coin[i] <- sum(samp) 
} 
mean(nheads_fair_coin >= 110)

## [1] 0

# Exact answer: 
pbinom(110, 122, 1/2, lower.tail = F)

## [1] 2.923364e-22
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Rosenbaum's bounds for -values (1)

Hammond (1964) matched on 18 covariates but might have missed something.

Fisher (1958) suggested there might be a gene that makes people like smoking
and gives them lung cancer.

Even if smoking does not affect lung cancer, observed results not surprising if
some confounder very strongly predicts smoking w/in pairs and causes death
from lung cancer with certainty.

Rosenbaum's approach: posit limit on degree of confounding (i.e. how well
gene predicts smoking); report -value for worst-case (ex ante) confounding
given this limit.

p

p
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Rosenbaum's bounds for -values (2)

Suppose each subject 's probability of being a smoker is in interval 
 (so in randomized experiment ).

Imposes limit on possible confounding.

Worst-case ex ante confounding given : in each pair, the person who was
destined to die from lung cancer became a smoker with probability .

New question: What is the probability that the person destined to die from
lung cancer became a smoker in at least 110 of the pairs?

p

i

[ − δ, + δ]1

2

1

2
δ = 0

δ

+ δ1

2
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Randomization inference (2)

Equivalently: What is prob. of at least 110/122 heads from biased coin?

delta <- .25 # degree of confounding/bias on coin 
nheads_biased_coin <- rep(NA, M)   # for storage 
for(i in 1:M){ 
  samp <- sample(x = c(0,1), size = 122, replace = T,  
                 prob = 1/2 + c(-delta, delta)) 
  nheads_biased_coin[i] <- sum(samp) 
} 
mean(nheads_biased_coin >= 110) # manual approx

## [1] 2.5e-05

pbinom(110, 122, 1/2 + delta, lower.tail = F) # exact answer 

## [1] 6.326946e-06
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R task

To calculate -value given 110/122 successes and , we used

How large does  have to be before the worst-case -value rises above .05?

p δ

pbinom(110, 122, 1/2 + delta, lower.tail = F)

δ p
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R task (solution)

deltas <- seq(from = 0, to = 1/2, by = .01) 
pvals <- rep(NA, length(deltas)) 
for(i in 1:length(deltas)){ 
  pvals[i] <- pbinom(110, 122, 1/2 + deltas[i], lower.tail = F) 
} 
plot(deltas, pvals, type = "l", col = "blue") 
abline(h = .05, lty = 3)
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Null distributions

We calculate -values by computing sampling distribution for a test statistic
under the null hypothesis (null distribution).

p

hist(nheads_fair_coin, xlim = c(11, 111)) 
abline(v = 110, col = "red", lty = 2)
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Null distribution (2)

Assuming worst-case confounding, null distribution moves closer to the test
statistic:

df <- data.frame(successes = c(nheads_fair_coin, nheads_biased_coin), 
      biased = c(rep("No: delta = 0", M), rep("Yes: delta = 1/4", M))) 
ggplot(df, aes(x = successes, fill = biased)) +  
  geom_histogram(alpha = .5) + geom_vline(xintercept = 110, linetype = 2)
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Rosenbaum bounds more generally

Rosenbaum bounds for -values can be calculated for matched datasets with
many test statistics (not just number of "successes" with binary outcome):

Also,

See R packages sensitivitymv and sensitivitymw, and Rosenbaum's book
Observational Studies (and note use of  vs ).

p

signed rank test (continuous treatment)

sign-score statistics

sum statistics

·

·

·

not just -values (confidence intervals too)

not just "prospective" studies (case-control studies too)

· p

·

Γ δ
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Regression approaches



Limitations of Rosenbaum approach

Framework is built around matched pairs/groups.

But what about when analysis is based on regression, not matching (e.g.
because treatment is continuous)?

We will study approaches based on omitted-variable bias in regression.
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Omitted variable bias

Suppose you estimate the effect of treatment  on outcome  using a
regression controlling for covariates :

Estimated treatment effect is .

How does omitting  from the regression affect the estimated treatment
effect?

D Y

, , … ,X1 X2 Xk

E[ ] = + τ + + + … +Yi β0 Di β1 X1 β2 X2 βkXk

τ ̂ 

Xk
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Example: Lalonde dataset

# load from cobalt package 
library(cobalt) 
data("lalonde", package = "cobalt") 
# or, download from my website: http://andy.egge.rs/data/lalonde.RData 
 
head(lalonde, 5)

##   treat age educ   race married nodegree re74 re75       re78 
## 1     1  37   11  black       1        1    0    0  9930.0460 
## 2     1  22    9 hispan       0        1    0    0  3595.8940 
## 3     1  30   12  black       0        0    0    0 24909.4500 
## 4     1  27   11  black       0        1    0    0  7506.1460 
## 5     1  33    8  black       0        1    0    0   289.7899

re7x: real earnings from 197x.

treat: participated in job training program in 1976-1977

·

·
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Some exploration

ggplot(lalonde, aes(x = re75, y = re78, color = as.factor(treat))) +  
  geom_smooth(se = F) +  
  geom_point(alpha = .5)
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Some exploration (2)

lalonde %>% ggplot(aes(x = re75, y = re78, color = as.factor(treat))) +  
  geom_smooth(se = F) + geom_point(alpha = .5) +  
  coord_cartesian(xlim = c(0, 15000), y = c(0, 30000)) +  
  facet_wrap( ~ race)
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R assignment: known OVB

Using linear regression,

Regress earnings in 1978 on treatment and all covariates, store as reg_long

Regress earnings in 1978 on treatment and all covariates except re74, store
as reg_short

Compute OVB from omitting re74, store as bias_direct

·

·

·
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R assignment: known OVB

# Regress earnings in 1978 on treatment and all covariates 
reg_long <- lm(re78 ~ treat + age + educ + race + married +  
                 nodegree + re74 + re75, data = lalonde) 
## Regress earnings in 1978 on treatment and all covariates except re74 
reg_short <- lm(re78 ~ treat + age + educ + race + married +  
                  nodegree + re75, data = lalonde) 
## Bias in our estimate of treatment effect  
(bias_direct <- coef(reg_short)["treat"] - coef(reg_long)["treat"]) 

##    treat  
## -327.028

30/50



R assignment: known OVB (fancier code)

# Regress earnings in 1978 on treatment and all covariates 
reg_long <- lm(re78 ~ ., data = lalonde) 
## Regress earnings in 1978 on treatment and all covariates except re74 
reg_short <- update(reg_long, . ~ . - re74) 
## Bias in our estimate of treatment effect  
(bias_direct <- coef(reg_short)["treat"] - coef(reg_long)["treat"]) 

##    treat  
## -327.028
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OVB from included covariates as basis for
sensitivity analysis

What does omitted variable bias (OVB) due to observed covariates tell us about
OVB due to unobserved covariates?

Possibly nothing (e.g. if observed covariates are noise and the key covariate is
unobserved).

Still, might be useful to know this ratio:

 
i.e. 

estimated effect size in full model

maximum bias due to omitting an observed covariate from full model

OVB necessary to eliminate estimated effect

maximum observed OVB
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OVB ratio: Implementation

What we need to do:

What does this mean?

Estimate OVB from omitting each variable in full model

Get maximum

Take ratio

·

·

·

source("http://andy.egge.rs/code/ovb_decomp.R") 
ovb_decomp <- OVB_from_included_covariates(re78 ~ treat + age + educ  
                + race + married + nodegree + re74 + re75,  
                data = lalonde, treatment_varname = "treat") 
ovb_decomp$bias_ratio

## |treatment effect| / maximum absolute OVB from model covariates  
##                                                        2.040728
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Another approach: decomposing OVB

We just did sensitivity analysis by comparing

What if we want to consider OVB from a hypothetical omitted variable, e.g. one
that is as related to the treatment as  and as related to the outcome as ?

We follow approach of Hosman, Hansen, and Holland ("HHH", 2010).

estimated treatment effect

OVB from dropping observed covariates

·

·

X1 X2
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The HHH decomposition of OVB

Consider estimating a "long" regression

a "short" regression omitting 

and a "treatment assignment" regression

Hosman, Hansen & Holland (2010) show that

E[ ] = + + + + … + ,Yi β0,l τlDi β1,l X1 β2,l X2 βk,lXk

Xk

E[ ] = + + + + … + ,Yi β0,s τsDi β1,sX1 β2,sX2 βs
k−1,s Xk−1

E[ ] = + + + … + .Di α0 α1X1 α2X2 αk Xk

OVB ≡ − = SE( )τs τl τs
αk

SE( )αk

(1 − ) − (1 − )R2
s R2

l

1 − R2
s

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

√
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HHH decomposition of OVB (2)

Bias from omitting  is product of three things:

OVB ≡ − = SE( ) × ×τs τl τs
αk

SE( )αk

(1 − ) − (1 − )R2
s R2

l

1 − R2
s

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

√
Xk

standard error of treatment effect in short regression

-statistic from coefficient on  in treatment assignment regression

degree to which  helps predict  (reduction in unexplained variance from
including )

·

· t Xk

· Xk Yi

Xk
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HHH bias decomposition: R task

[Already done] Regress earnings in 1978 on treatment and all covariates,
store as reg_long

[Already done] Regress earnings in 1978 on treatment and all covariates
except re74, store as reg_short

[Already done] Compute OVB from omitting re74, store as bias_direct

Regress treatment on all covariates, store as treatment_mod

Compute OVB HHH-decomposition: product of

Compare to bias_direct

·

·

·

·

·

standard error on treat in reg_short

t-stat on re74 in treatment_mod

square root of reduction in unexplained variance from reg_short to
reg_long

-

-

-

·

37/50



HHH bias decomposition: R solutions

See above for reg_long, reg_short, and bias_direct.

treatment_mod <- lm(treat ~ . - re78, data = lalonde)  
seb <- sqrt(diag(vcov(reg_short)))["treat"] 
tW <- summary(treatment_mod)$coefficients["re74", "t value"] 
uv_long <- 1 - summary(reg_long)$r.squared # uv: unexplained variance 
uv_short <- 1 - summary(reg_short)$r.squared 
delta_uv <- (uv_short - uv_long)/uv_short 
c(seb, tW, sqrt(delta_uv))

##       treat                          
## 794.4701222  -2.0311951   0.2026543

c(seb*tW*sqrt(delta_uv), bias_direct)

##    treat    treat  
## -327.028 -327.028
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HHH variance computations

Omitted variables also affect standard errors.

HHH derive SE's as function of the same 3 parameters:

Thank you HHH!

SE( ) = SE( )τl̂ τŝ 1 +
1 +

αk

SE( )αk

df − 1

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾

√ 1 −
(1 − ) − (1 − )R2

s R2
l

1 − R2
s

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

√
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Sensitivity intervals

For a given vector of parameters and a given direction of bias, you get a single
confidence interval.

For a range of parameters (e.g. -stat no larger than ) and unknown direction
of bias, you get a set of intervals, the union of which HHH call the sensitivity
interval.

Like Rosenbaum's bounds, sensitivity interval is informative about ex ante
worst case.

HHH show how to compute edges of sensitivity interval from their three
parameters.

t z
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Choosing parameters

Remember, HHH's sensitivity interval is based on:

Item (1) can come directly from regression model.

What should we choose for items (2) and (3)?

1. standard error of treatment effect

2. -stat for OV in treatment assignment model

3. reduction in unexplained variance (RUV) from adding OV to outcome model

t
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HHH's approach

HHH (2010) report sensitivity intervals for

-stats from six deliberately excluded covariates, and

three values for RUV: .01, .1, 1

· t

·
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Black et al's approach

Black et al (2018) report sensitivity intervals using -stat and RUV fromt

1. variable with highest RUV

2. variable with highest -stat

3. RUV from 1, -stat from 2

4. RUV and -stat from all covariates jointly

t

t

t
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Implementation in R (1)

For perspective, look at -stats and pct reduction in unexplained variance from
Lalonde covariates:

source("http://andy.egge.rs/code/HHH_sensitivity_interval.R")

t

tab <- make_specpars_table(formula = re78 ~ ., data = lalonde,  
                           treatment_varname = "treat") 
round(tab, 3)

##            |tW|  PRUV 
## age       1.298 0.026 
## educ      2.465 1.059 
## race     22.697 0.618 
## married   2.584 0.057 
## nodegree  2.239 0.016 
## re74      2.031 4.107 
## re75      0.689 0.804
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Implementation in R (2)

Get sensitivity interval assuming an omitted variable like re74:

Get sensitivity interval assuming an omitted variable as related to the outcome
as re74 and as related to the treatment as race:

re74_si <- make_sensitivity_interval(formula = re78 ~ ., data = lalonde,  
          treatment_varname = "treat", tw = 2.03, r.par = .041) 
round(re74_si, 3)

## [1] -278.848 3375.335

hybrid_si <- make_sensitivity_interval(formula = re78 ~ ., data = lalonde,  
          treatment_varname = "treat", tw = 22.7, r.par = .041) 
round(hybrid_si, 3)

## [1] -4086.686  7183.173
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Sensitivity analysis: extra material



The standard OVB decomposition

We estimate a "long" regression

and a "short" regression omitting 

Consider this "auxiliary" regression:

Brace yourself, because:

E[ ] = + τ + + + … +Yi β0 Di β1 X1 β2 X2 βkXk

Xk

E[ ] = + + + + … + .Yi β0,s τsDi β1,sX1 β2,sX2 βk−1,s Xk−1

E[ ] = + + + + … + .Xk α0 τaDi α1X1 α2X2 αk−1 Xk−1

− τ =τs τaβk
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Standard OVB decomposition in R

We said  where

Confirm this in the Lalonde data where re74 is the omitted variable.

− τ =τs τaβk

 is treatment effect in short regression (omitting )

 is treatment effect in long regression (including )

 is coefficient on  in long regression

· τs Xk

· τ Xk

· βk Xk
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OVB decomposition in R (sol'n)

reg_long <- lm(re78 ~ treat + age + educ + race + married +  
                 nodegree + re74 + re75, data = lalonde) 
reg_short <- lm(re78 ~ treat + age + educ + race + married +  
                  nodegree + re75, data = lalonde) 
(bias_direct <- coef(reg_short)["treat"] - coef(reg_long)["treat"]) 

##    treat  
## -327.028

# auxiliary regression 
reg_aux <- lm(re74 ~ treat + age + educ + race + married +  
                nodegree + re75, data = lalonde) 
(bias_decomp <- coef(reg_aux)["treat"]*coef(reg_long)["re74"]) 

##    treat  
## -327.028

49/50



Applying to sensitivity analysis

We could base our sensitivity analysis on the standard decomposition, i.e.

Two downsides relative to HHH:

= ×− ττs

⏞

OVB

τa
⏞OV-treat link

βk

⏞Outcome-OV link

Both components here are tied to units; in HHH only  is

Regression of omitted variable on treatment and other covariates (here) less
interpretable than regression of treatment on omitted variable and other
covariates (HHH)

· SE(τ)

·
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