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What is a model?

Jones’s “New Portable
Orrery” (1794)

“All models are wrong, but some are useful.” George Box
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How probability works

Given a set of
probability
distributions...

...what data
should we expect .
to observe! .

...that characterize a
data generating
process (DGP)...




How statistics works

>

Given the data .
we observe... o

...what set of
probability
distributions...

characterize the
DGP?




Probability distributions (PDF/PMF)

Continuous random variables are described by probability
density function (PDF). (Discrete RVs by probability mass
function, PMF)
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Single count

Suppose we view the
number of students
sitting in row 3 as a
Poisson random
variable.
(Reasonable?)

1) If A =2, how likely
is the observed
outcome!?

2) If A =5, how likely
is the observed
outcome!?
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Single count (2)

Suppose we view the
number of students
sitting in row 3 as a
Poisson random
variable.

Pr(y|A)

For what value of A is
the observed
outcome most likely?
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Joint & conditional probability and independence

For two events E and F, the probability of both events
happening is written

P(E,F) or P(ENF)

joint
probability

The probability of E happening given F is written

P(E|F)

conditional
probability

If E and F are independent,

P(E|F)=P(F)
and:

P(E,F) = P(E) x P(F)




Vector of counts

Suppose we view the
number of students
sitting in each row as
an independent
Poisson random
variable. (Reasonable?)

1) If A =2, how likely is
the observed outcome
for rows 3-5?7

2) If A =5, how likely is
the observed outcome
for rows 3-5?7
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Likelihood vs probability

We postulate a model for how this data was generated (Poisson trials).

Given one set of observed data, we can
consider different model parameters A and
calculate the probability of observing the data
for each one. (This is the likelihood!)

For one value of model parameter A, we can
consider different possible outcomes and

calculate the probability of them occurring.
(That is the PMF/PDF!)
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Vector of counts with a covariate

Suppose we view the
number of students
sitting in each row as
an independent Poisson
random variable, and
we assume

Pr(y|A)
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How likely is the
observed outcome for
rows 3-5if B = 1?
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Vector of counts with a covariate

Suppose we observe
5,2,and 4 students.

row # students A = row;
3 5 0.1
4 2 0.15
6 4 0.13
0.00195
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Vector of counts with a covariate (2)

We assumed

>\i — BTOWZ'

so now we want to choose the B that yields the vector of

Ai that maximizes the probability of seeing the data we
observed.

The same as searching for the A that makes the data most
likely; just one intervening step.



Maximum likelihood

Using O to refer to parameters (e.g. A, B), consider:

0(y) = argmaxyL(6]y)

The maximum likelihood estimate (MLE) is the O that makes
the observed data (y) most likely.

A general approach to statistical modeling:

* write down f(y|0) (pdf/pmf: a function of the outcome, conditional on
parameters); if we think of this as a function of the parameters,
conditional on the outcome, we have L(B|y) (the likelihood)

 observe data (y: actual outcomes)

* find parameters that maximize L(0|]y): the MLE!



Maximum likelihood (common notation)

L(O]Y)
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Likelihood is not probability

Finding parameters that maximize the likelihood is a good idea.

But likelihood is not probability:

* given A=2, what is the probability of observing y=4

* given y=4, what is the probability that A=2?
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Maximum likelihood and Bayesian analysis

L(0y) = Pr(y|0)

Likelihood Prior

_ Pr(y|0)Pr(0)
Pr(y)

Pr(0]y)

Bayes Law

Propor-
tional to

Pr(fly) o< Pr(y|0)Pr(0)

So: Bayesian analysis requires prior distributions on parameters,
and allows us to make probability statements about the
parameters (conditional on the model).



How statistical models look in research papers

How to Analyze Political Attention with Minimal

Assumptions and Costs

Kevin M. Quinn University of California, Berkeley A topic model: what is each
Burt L. Monroe The Pennsylvania State University .

Michael Colaresi Michigan State University speech in Congress about!

Michael H. Crespin University of Georgia
Dragomir R. Radev University of Michigan

First they describe the generative model, Then they state the prior distributions
i.e. the likelihood or “sampling density’”: for the parameters:

To complete a Bayesian specification of this model we
need to determine prior distributions for 6 and . We as-

As will become apparent later, it will be useful to write sume a semiconjugate Dirichlet prior for 8. More specif-

this sampling density in terms of latent data z,, . .., Zp. ically, we assume
Here z; is a K-vector with element z4; equal to 1 if doc-
ument d was generated from topic k and 0 otherwise. If 0y ~ Dirichlet(A;) k=1,..., K.
we could observe z,, . ..., z)) we could write the sampling For the data analysis below we assume that A, = 1.01
density above as for all k and w. This corresponds to a nearly flat prior
D X W Za over 0. This prior was chosen before looking at the data.
p(Y,Z|m,0) x l_l (‘ﬂ’s(d;k l—[ B ) The prior for 7 is more complicated. Let 7w, € A% !
du kel w=1 denote the vector of topic probabilities at time t. The

model assumes that a priori

z4 ~ Multinomial(1, m,4)).



