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What is a model?

Jones’s “New Portable 
Orrery” (1794)

“All models are wrong, but some are useful.” George Box
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How probability works
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…what data 
should we expect 
to observe?
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How statistics works

y

Y

0 5 10 15

µ= 3, σ = 1
µ= 6, σ = 2.5

…what set of 
probability 
distributions… 

characterize the 
DGP?

X

Y

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Given the data 
we observe…



5

Probability distributions (PDF/PMF)
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Two parameters in normal 
PDF: mean (μ) and variance 
(σ²).

Describes sum/average of 
many random variables. 
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Continuous random variables are described by probability 
density function (PDF).  (Discrete RVs by probability mass 
function, PMF.)
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Poisson PMF

Characterizes count of 
events (e.g. false 
convictions, horse kicks) 
observed in a fixed 
interval when 
• events are independent
• rate of occurrence 

(probability per unit 
time) is constant 
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Single count

Suppose we view the 
number of students 
sitting in row 3 as a 
Poisson random 
variable. 
(Reasonable?)

1) If λ = 2, how likely 
is the observed 
outcome?

2) If λ = 5, how likely 
is the observed 
outcome?
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Single count (2)

Suppose we view the 
number of students 
sitting in row 3 as a 
Poisson random 
variable.

For what value of λ is 
the observed 
outcome most likely?
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Joint & conditional probability and independence 

For two events E and F, the probability of both events 
happening is written 

P(E,F ) or P (E \ F )

The probability of E happening given F is written 

P(E|F ) conditional 
probability

joint 
probability

P(E|F ) = P(E)

If E and F are independent, 

and:

P (E,F ) = P (E)⇥ P (F )
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Vector of counts

Suppose we view the 
number of students 
sitting in each row as 
an independent 
Poisson random 
variable. (Reasonable?)

1) If λ = 2, how likely is 
the observed outcome 
for rows 3-5?

2) If λ = 5, how likely is 
the observed outcome 
for rows 3-5?
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Likelihood vs probability
We postulate a model for how this data was generated (Poisson trials). 
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For one value of model parameter λ, we can 
consider different possible outcomes and 
calculate the probability of them occurring. 
(That is the PMF/PDF!)

Given one set of observed data, we can 
consider different model parameters λ and 
calculate the probability of observing the data 
for each one. (This is the likelihood!)  
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Vector of counts with a covariate

Suppose we view the 
number of students 
sitting in each row as 
an independent Poisson 
random variable, and 
we assume

How likely is the 
observed outcome for 
rows 3-5 if β = 1?
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Vector of counts with a covariate
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Suppose we observe 
5, 2, and 4 students.

row # students λ = rowᵢ

3 5 0.1

4 2 0.15

6 4 0.13

0.00195
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Vector of counts with a covariate (2)

We assumed 

�i = �rowi

so now we want to choose the β that yields the vector of 
λᵢ that maximizes the probability of seeing the data we 
observed.

The same as searching for the λ that makes the data most 
likely; just one intervening step.
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Maximum likelihood

Using θ to refer to parameters (e.g. λ, β), consider:

ˆ✓(y) = argmax✓L(✓|y)

The maximum likelihood estimate (MLE) is the θ that makes 
the observed data (y) most likely. 

A general approach to statistical modeling: 
• write down f(y|θ) (pdf/pmf: a function of the outcome, conditional on 

parameters); if we think of this as a function of the parameters, 
conditional on the outcome, we have L(θ|y) (the likelihood)

• observe data (y: actual outcomes)
• find parameters that maximize L(θ|y): the MLE! 
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Maximum likelihood (common notation)

iid assumption
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Likelihood is not probability

Finding parameters that maximize the likelihood is a good idea. 
But likelihood is not probability:
• given λ=2, what is the probability of observing y=4
• given y=4, what is the probability that λ=2?  
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Maximum likelihood and Bayesian analysis

L(✓|y) = Pr(y|✓)

Pr(✓|y) = Pr(y|✓)Pr(✓)
Pr(y)

Bayes Law

Likelihood Prior

Pr(✓|y) / Pr(y|✓)Pr(✓)
Propor-
tional to

So: Bayesian analysis requires prior distributions on parameters, 
and allows us to make probability statements about the 
parameters (conditional on the model). 
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How statistical models look in research papers

A topic model: what is each 
speech in Congress about?

First they describe the generative model, 
i.e. the likelihood or “sampling density”:

Then they state the prior distributions 
for the parameters:


