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But policies do make jumps:
• Students receive a “first” if they score 70 or higher
• French municipalities use PR elections if population is 3,500 

(now 1,000) or higher
• A candidate is elected if she receives more votes than any 

other candidate
• Journalists report a recession if the economy shrinks for two 

consecutive quarters

“Natura non facit saltus.” 
(Nature makes no jump.) 

— Gottfried Leibniz
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Plan

• Quick intuition (already done)
• Understanding the continuity assumption
• Examples
• Some more general evidence on RD validity
• Some guidance on estimation
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Review: causal inference as missing data problem

Unit Yi Di Y1i Y0i

1 3 1 3 ?

2 1 1 1 ?

3 0 0 ? 0

4 1 0 ? 1

… … … … …



6

Estimating treatment effects in the whole sample

(Whole sample)

O
ut

co
m

e
Control unit

Treated unit



6

Estimating treatment effects in the whole sample

(Whole sample)

O
ut

co
m

e
Control unit

Treated unit

Recall ATT is
E[Y1|Di=1] - E[Y0|Di=1].



6

Estimating treatment effects in the whole sample

(Whole sample)

O
ut

co
m

e
Control unit

Treated unit

Recall ATT is
E[Y1|Di=1] - E[Y0|Di=1].
Might estimate ATE with
E[Y1|Di=1] - E[Y0|Di=0].



6

Estimating treatment effects in the whole sample

(Whole sample)
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e
Control unit

Treated unit

Recall ATT is
E[Y1|Di=1] - E[Y0|Di=1].
Might estimate ATE with
E[Y1|Di=1] - E[Y0|Di=0].

Under what conditions does this 
give an unbiased estimate?
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What if treatment assignment depends on a cutoff 
value of Xi?

Unit Yi Di Y1i Y0i Xi

1 3 1 3 ? 0.3

2 1 1 1 ? 0.7

3 0 0 ? 0 -1.2

4 1 0 ? 1 -0.4

… … … … …

Assignment mechanism:  Di = 1 iff Xi ≥ 0
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Estimating treatment effects when treatment 
depends on a discontinuity

Xi

O
ut

co
m

e

Control unit

Treated unit

How could we estimate 
the treatment effect?

What assumptions are 
we using?

0
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Suppose the FPOCI is overcome (rejoice!)

Unit Yi Di Y1i Y0i Xi

1 3 1 3 1.4 0.3

2 1 1 1 0.8 0.7

3 0 0 1.3 0 -1.2

4 1 0 1.1 1 -0.4

… … … … …
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Estimating treatment effects when both potential 
outcomes are observed

Xi
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Potential outcome 
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for unit i

What treatment 
effects could we 
estimate now?

0

Potential outcome 
under control for 

unit i
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Here’s one: Local average treatment effect (LATE)

Xi
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0

CEF of Y0|Xi

LATE: E[Y1|Xi=x] - E[Y0|Xi=x].    (E[Y|X=x] is the “CEF at x”)

CEF of Y1|Xi
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= x]
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= 0] = lim
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E[Y0|Xi

= x]

“as x goes to 
0 from above”

“as x goes to 
0 from below”

In words: the CEF for treated and untreated at Xi=0 can be 
estimated by extrapolating each CEF to the boundary. 
Obviously we can estimate the LATE at Xi = 0 if these assumptions 
are valid.    (What about at other values of Xi?)
When would these assumptions be valid?

What assumptions do we need?
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In practice, we also need either (a) a lot of data or (b) CEFs that 
aren’t too bendy. 

When can we extrapolate to the threshold? (2)
O

ut
co

m
e

0 15

Satisfies continuity 
assumption, but 
hard to estimate 
with finite data
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• Is the density of the running variable continuous across the 
threshold? (McCrary 2008)

• Are covariates (e.g. incumbency status, mayor characteristics, 
lagged outcomes) continuous across the threshold? 

So how do we check for sorting?
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Example 1: Eggers and Spirling on incumbency effects in UK politics
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Example 1: tests of the continuity assumption (1)

McCrary test for continuity in the density
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Example 1: tests of the continuity assumption (2)

Tests for continuity in covariate: whether or not the election took 
place in a borough (vs county) constituency
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Example 1: tests of the continuity assumption (3)

Tests for continuity in covariate: whether or not the Conservatives 
won the previous election 



22

Example 2: Eggers (2015) on turnout and proportionality
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Research question: Does a more proportional electoral system lead to 
more voter turnout on average?
Strategy: Use RDD to compare French municipalities using PR and 
plurality systems at the 3,500 population cutoff determining electoral 
system 

Example 2: Eggers (2015) on turnout and proportionality

Turnout in 2001 
municipal elections, 

by municipal 
population
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Example 2: testing the continuity assumption

(Page 144)
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Example 2: testing the continuity assumption (2)
Estimated effect of crossing 3,500 on turnout in municipal elections and 
higher-level elections
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Example 2: testing the continuity assumption (3)
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Does RDD work for political science applications? The 
case of population thresholds (1)
Eggers, Freier, Grembi, and Nannicini (forthcoming): There may be 
more reason to doubt RDDs based on population thresholds.
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First problem: 
same threshold 
often used to 
determine more 
than one 
treatment.

See Eggers, Freier, 
Grembi, 
Nannichini 
(forthcoming) and 
Eggers (2015) for 
ideas about 
handling this.

Does RDD work for political science applications? The 
case of population thresholds (1)
Eggers, Freier, Grembi, and Nannicini (forthcoming): There may be 
more reason to doubt RDDs based on population thresholds.
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Does RDD work for political science applications? The 
case of population thresholds (2)
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Second problem: sorting.  Consider histograms of population in 
French villages near 1,000 in pop., where mayor’s salary increases:
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Pooling all thresholds, censuses from France:

Does RDD work for political science applications? The 
case of population thresholds (3)

Histograms (bin width = 1)
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Even worse in Italy:

Does RDD work for political science applications? The 
case of population thresholds (3)

Histograms (bin width = 10)
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Does RDD work for political science applications? 
General questions about sorting



31

(1) Why do you think there is sorting in the municipal 
population case but not (apparently) close elections?
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(1) Why do you think there is sorting in the municipal 
population case but not (apparently) close elections?

(2) If there is sorting, is the RDD ruined?  

Does RDD work for political science applications? 
General questions about sorting
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All we need to do is estimate two CEFs at the threshold:

Estimation

E[Y1|Xi

= 0] = lim
x!0+

E[Y1|Xi

= x]

E[Y0|Xi

= 0] = lim
x!0�

E[Y0|Xi

= x]

So, how do we do it?
Over past 10 years, much variety. Something simple gets 
complicated!
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Consider running this regression:
Y = β₀ + β₁D + β₂X + β₃ D × X  
restricting to observations where |X| < h. 
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Questions: 
• What will the fitted 

equation look like? 
• Which coefficient is the 

estimated treatment effect? 
• What value of h (bandwidth, 

window) should you 
choose?

There is a bias-variance 
tradeoff. 
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Most common approach: local regression, as on previous slide, with:
• bandwidth (h) chosen by algorithm that considers curvature of CEF 

and density of data
• weights that are larger closer to the threshold (triangular kernel)
• (sometimes) polynomial terms (square, cube, etc) in estimating CEF
• bias correction (Calonico, Cattaneo, Titiunik) based on curvature
• robustness checks to show same result with many approaches
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State of the art: 
rdrobust 
package (Stata, 
R), other work 
by Calonico, 
Cattaneo, Titiunik

Rocío Titiunik
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• Living through the stock market crash of 1929 had a major 
effect on people’s risk tolerance and savings behavior. I will 
measure this effect using an RDD with “age in 1929” as the 
running variable and I will use a cutoff of 21 years old, as this 
is when people “come of age”.

• Other suggestions?
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Summing up and generalizing

To address selection bias, we must understand the process of 
selection (i.e. assignment mechanism). 
RDD is an extreme case of selection on observables.
Causal inference is most favorable when there is an assignment 
mechanism that
• is transparent/well understood (at least in part)
• treats similar units differently
Think about what "treating similar units differently" means in 
matching, IV, diff-in-diff/panel, RDD.
You may find other cases where a transparent rule treats similar 
units differently — keep an eye out!


