
Panel data for causal inference

Intermediate Social Statistics
Week 5 (14 February 2017)

Andy Eggers

1



2



3

Causal inference: the big picture



3

Fundamental problem of 
causal inference

Causal inference: the big picture



3

Fundamental problem of 
causal inference

Causal inference: the big picture

All causal claims rely on 
untestable assumptions



3

Fundamental problem of 
causal inference

Causal inference: the big picture

All causal claims rely on 
untestable assumptions

Make assumptions 
explicit



3

Fundamental problem of 
causal inference
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All causal claims rely on 
untestable assumptions

Make assumptions 
explicit

Conduct (indirect) 
tests when possible
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Causal inference: the big picture (2)

What are the assumptions? What indirect tests?
• Regression
• Matching
• IV
• Diff-in-diff
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Today’s plan

• Big picture on importance of assumptions (done)
• Brief diff-in-diff review
• Generalizing in panel data

• “First differences” approach
• “Dummy variables” approach
• “Fixed effects” approach (“within” regression)

• An example from the reading
• General guidelines: when is panel data useful for 

causal inference?
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Standard diff-in-diff (two-
period,  binary 
treatment): review

t = 0 t = 1

E[Y1(1)-Y0(1)|D=1]

E[Y0(1)|D=1]

E[Y(0)|D=0]

E[Y(0)|D=1]

E[Y(1)|D=1]

E[Y(1)|D=0]

Parallel trends assumption:
E[Y0(1)-Y(0)|D=1] = E[Y(1) - Y(0)|D=0]
If assumption holds, ATT given by diff-in-diff, i.e.
E[Y(1)-Y(0)|D=1] - E[Y(1) - Y(0)|D=0]

Constraints:
• Binary treatment 

applied to some units 
at a point in time

• One or more “pre-
treatment” periods
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Testing the parallel trends assumption

t = 0 t = 1

Parallel trends 
assumption looks good

t = -1t = -2 t = 0 t = 1

Parallel trends 
assumption looks bad

t = -1t = -2

Parallel trends assumption:
E[Y0(1)-Y(0)|D=1] = E[Y(1) - Y(0)|D=0]
Can we test it?
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The beauty of the diff-in-diff: selection on 
unobservables

The key assumption in regression & matching can be stated as 
selection on observables:
• All covariates (factors that differ between treatment and control 

and affect the outcome) are observed (and properly controlled for). 
• Or, no unobserved confounding variables.

With diff-in-diff (and today’s panel methods, and IV), we can make a 
weaker assumption — these allow selection on unobservables.

Key (in diff-in-diff): 
• All confounders are unchanging over time. 
• Or, no time-invariant confounding variables.
• In other words, unobserved okay if unchanging.
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Can we generalize?

What if:
• treatment happens to different units at different times?
• treatment is not binary?
We can’t do the standard diff-in-diff.
But we can get most of the benefits in a more general 
approach, given panel data: same units (individuals, countries, 
classrooms) observed at several points in time.

(Note that diff-in-diff does not require panel data! Repeated 
cross-section could work.)
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Three ways to get the same answer

Given panel data (e.g. in train bombing, Elbe flood) with 
two time periods, three approaches give same estimate:
• regress outcome on binary indicators for group 

(treated vs control), time period (pre vs post), and 
interaction between them  [group diff-in-diff 
formulation]

Yᵢt = β₀ + β₁ Gᵢ + β₂ Postt + β₃ Gᵢ × Postt

• regress difference in outcome (Δ Y = Ypost - Ypre) on 
difference in treatment (Δ D = Dpost - Dpre) [first 
differences formulation]

   Δ Y = τ Δ D 

• regress outcome on binary indicator for each unit 
(i.e. dummy for each individual, city, classroom), 
indicator for time period (pre vs post), and treatment 
[least-squares dummy variable formulation, LSDV]

   Yit = μi + β1 Postt + τ Dit

Of these, which 
could be used 
with

• repeated 
cross-section?

• treatment 
being applied 
at different 
times?

• non-binary 
treatment?
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First differences formulation, more generally

Suppose the data generating process (DGP) is
Yit = τ Dit + λt + ui + ωit, 
where ωit is random noise (and Dit and ui are related).
In words: outcome for a unit at a point in time depends on 
treatment, the time period, some unit-specific time-invariant 
characteristics ui, and random noise.

In cross-section, could use regression/matching to estimate 
τ if ui is observed (selection on observables).
But what if ui is not observed (selection on unobservables)?
With panel, take first differences:
Yit - Yi,t-1 = τ (Dit-Di,t-1) + (λt-λt-1) + (ui - ui) + (ωit-ωi,t-1)
Δ Yit = τ Δ Dit + λt̃ + ω̃it

You can estimate τ even though ui is unobserved!
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LSDV formulation, more generally

Suppose again that DGP is 
Yit = τ Dit + λt + ui + ωit, 
where ωit is random noise (and Dit and ui are related), and 
suppose that ui is unobserved.
Idea: include a dummy variable for every unit (individual, 
municipality, school) and time period.
Idea, continued: There may be many important unobserved 
covariates that affect outcome and treatment. Any time-
invariant covariates are controlled for by the unit-specific 
dummy variable. Any common time trends are controlled for 
by the time period dummy variables.
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LSDV and “fixed effects”

Instead of LSDV, more common to specify “fixed 
effects” (fe option in Stata xtreg). This produces the 
same result by “demeaning” the variables for each unit 
rather than including a dummy variable for each unit.
Why does this work?
• Logic of partial regression (see MHE on this)
• Link to first differences
Depending on the problem, may help to think about fixed 
effects regression as LSDV or first differences.
Also referred to as “within” (vs “between”) regression.
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The key assumption and when it fails

We showed how to estimate the ATE when DGP is 
Yit = τ Dit + λt + ui + ωit, 

where ωit is random noise and ui unobserved.
What about if the DGP is 

Yit = τ Dit + λt + ui + vit + ωit

and both ui and vit unobserved? 
ui is a time-invariant confounder. 
vit is a time-variant confounder.
First-differences, LSDV, fixed effects all handle ui but not vit.

So in panel studies (generalized DiD with two-way fixed effects)
• key assumption: no time-variant unit-specific confounders
• your job: think about what could violate this assumption  
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Example: specification

Note a few special features: 
• unit-specific time trends (αit) — how does this relax the parallel 

trends assumption?
• let k be -3, -2, . . . , 6 — what does this test? What should we expect 

to find if partisan alignment affects spending?

Statement of assumptions under which this gives the right 
answer (and possible violations of those assumptions):



19

Example: results



20

Example: results (2)



20

Example: results (2)

Using interactions, they also show:



20

Example: results (2)

Using interactions, they also show:
• larger effect before elections



20

Example: results (2)

Using interactions, they also show:
• larger effect before elections
• larger effect in county councils with less frequent elections



20

Example: results (2)

Using interactions, they also show:
• larger effect before elections
• larger effect in county councils with less frequent elections
• larger effect in more competitive councils



20

Example: results (2)

Using interactions, they also show:
• larger effect before elections
• larger effect in county councils with less frequent elections
• larger effect in more competitive councils
They also do a “triple-difference” analysis, but this is not what 
people usually call a “triple-difference”.
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Triple differences (difference-in-
differences-in-differences), briefly

Suppose you do a classic diff-in-diff, but you know the parallel 
trends assumption probably doesn’t hold.

To deal with likely violation of parallel trends assumption, could do 
diff-in-diff in neighboring state (without program) and subtract first 
DiD from second DiD => triple-diff. 
In what circumstances is this better than using girls in neighboring 
state as control group instead of boys in Bihar?
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General guidelines: when can panel data help with 
causal inferences

Common to all of our designs:
• when there is a clearly defined independent variable of 

interest (“treatment”)
• when you can imagine manipulating the treatment

Specific to panel data:
• when you can get data for the same units over time
• when treatment changes over time for some units
• when the treatment’s effects are not too delayed, or are 

delayed in a consistent manner


