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We’ve seen:

• Regression (OLS)
• RCTs
• Matching
• Instrumental variables
• RDD
• Diff-in-diff/panel

You also saw:
• Logistic regression

What else do we need?
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Conventional approach: tour of Generalized Linear 
Models (GLMs) via “range matching”

If your dependent variable is . . . …you need this model.
See this Stata 

command.

Continuous (and unbounded) OLS regress

Binary (e.g. join WTO or not) Logit
Probit

logit
probit

A count (e.g. 0, 1, 10 wars) Poisson
Negative binomial

poisson
nbreg

Ordered categories (e.g. “opposed”, 
“neutral”, in favor”)

Ordinal logit
Ordinal probit

ologit
oprobit

Non-ordered categories (e.g. Tory, 
Labour, Lib Dem; Christian, Muslim, 

Jewish, atheist) 

Multinomial logit, 
conditional logit

mlogit
clogit

A measure of survival or duration (e.g. 
cabinet or war duration) Survival or hazard model stcox
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Conventional approach: tour of Generalized Linear 
Models (GLMs) via “range matching”

If your dependent variable is . . . …you need this model.
See this Stata 

command.

Continuous (and unbounded) OLS regress

Binary (e.g. join WTO or not) Logit
Probit

logit
probit

A count (e.g. 0, 1, 10 wars) Poisson
Negative binomial

poisson
nbreg

Ordered categories (e.g. “opposed”, 
“neutral”, in favor”)

Ordinal logit
Ordinal probit

ologit
oprobit

Non-ordered categories (e.g. Tory, 
Labour, Lib Dem; Christian, Muslim, 

Jewish, atheist) 

Multinomial logit, 
conditional logit

mlogit
clogit

A measure of survival or duration (e.g. 
cabinet or war duration) Survival or hazard model stcox

See glm (generalized linear model) package for many of these.
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Generalized linear models Gailmard p. 146: “invertible function of 
the model parameter is expressed as 
a linear function of the covariate(s)”
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This week

• Lab: intuition and practice with GLMs in Stata
• This lecture: 

• Why I think OLS is enough for estimating treatment 
effects (and many other tasks) 

• When statistical modeling might be more useful
• Introduction to statistical models based on MLE
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Ordinal probit application: Hainmueller and Hiscox 2010

Two economic explanations for (variation in) anti-
immigrant sentiment:
• Labor market competition → natives should oppose 

immigrants with skill levels similar to their own
• Fiscal burden → rich natives should be more opposed 

to low-skilled immigrants than poor natives (especially 
where immigrants use a lot of public services)  

Hainmueller and Hiscox ask a sample of US respondents either  
A. Do you agree or disagree that the US should allow more highly 

skilled immigrants from other countries to come and live here? 
B. Do you agree or disagree that the US should allow more low-

skilled immigrants from other countries to come and live here?

(Random 
whether 

respondent 
gets A or B)
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Hainmueller and Hiscox (2010): why reviewers asked for 
ordinal probit

Question A
(allow more 
high-skilled 

immigration?)

Question B
(allow more 
low-skilled 

immigration?)
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Hainmueller and Hiscox (2010): why reviewers asked for 
ordinal probit (cont’d)
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Ordered probit

Motivations:
• Predict ordered outcome Y
• Characterize the determinants of a 

latent variable Y* (e.g. support for 
immigration) underlying ordered 
outcome Y

1. Strongly disagree 
2. Disagree
3. Neither agree nor disagree
4. Agree
5. Strongly agree
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Ordered probit: theory

Suppose we observed Y* 
(support for immigration), 
which in conjunction with 
cutpoints τ1, τ2 etc perfectly 
predicts the response given:
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Ordered probit: theory

Suppose we observed Y* 
(support for immigration), 
which in conjunction with 
cutpoints τ1, τ2 etc perfectly 
predicts the response given:

τ1 τ2 τ3 τ4

Y=2 Y=3 Y=4Y=1 Y=5

Y*
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Ordered probit: theory (continued)

We don’t observe Y*, but we 
postulate that it is a linear 
function of covariates, plus 
random error (standard normal): 

τ1 τ2 τ3 τ4

µ1

f(Y*|xβ = µ1)

(probability density function)
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Ordered probit: visualization
That implies that given τ₁, τ₂, τ₃, τ₄ and μᵢ = xᵢβ we know the 
probability of each outcome:
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Ordered probit: visualization

τ1 τ2 τ3 τ4

µ1 xβ

That implies that given τ₁, τ₂, τ₃, τ₄ and μᵢ = xᵢβ we know the 
probability of each outcome:

τ1 τ2 τ3 τ4

µ1 xβ
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Ordered probit: visualization (2)

τ1 τ2 τ3 τ4

µ2 xβ
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Ordered probit: visualization (3)

τ1 τ2 τ3 τ4

µ2 xβ
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Binary probit: a special case with single threshold at 0

0

µ2 xβ
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Binary probit: a special case with single threshold at 0

0

µ2 xβ

Change from normal to type 1 
extreme value and it’s a logit!
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Binary probit: a special case with single threshold at 0
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µ1µ2 xβ

Change from normal CDF to type 
1 extreme value and it’s a logit!



18

Back to Hainmueller and Hiscox

Zi contains controls: 7 age 
bracket dummies, gender 
dummy, 4 race dummies

“Notice that because the randomization 
orthogonalized HSKFRAME with respect to Z, 
the exact covariate choice does not affect the 
results of the main coefficients of interest.” p.70

(μᵢ = Y* = xᵢβ)
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Ordered 
probit: 
estimation
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Hainmueller and Hiscox: ordered probit results
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Hainmueller and Hiscox: why ordered probit?

Conventional view: “Your outcome is an ordered 
categorical variable, so you must estimate an ordered 
probit model! (Although I don’t remember exactly 
why.)”

But the authors don’t use the model for prediction 
(e.g. estimated proportion of respondents answering 
category 4 given treatment status, education, gender.)

They report the coefficients (and not the cutoffs!), and 
move on to logit for a different outcome: support 
more immigration.
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Hainmueller and 
Hiscox: logit results
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Why logit? 

Conventional view: 
“Outcome is a binary 
variable, so you must 
use logit! (Although I 
don’t remember 
exactly why.)”
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Why logit? 

Conventional view: 
“Outcome is a binary 
variable, so you must 
use logit! (Although I 
don’t remember 
exactly why.)”

Why not estimate a 
linear probability 
model (LPM) — i.e. 
OLS despite binary 
outcome?  



The usual case against the linear probability 
model (LPM)
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• Predictions outside the range of dependent variable
• Heteroskedasticity (violates OLS assumption)
• Non-normal errors (violates OLS assumption*)
• Unrealistic for probability to be linear in X

24



The defense of the LPM: responses to critiques

25



The defense of the LPM: responses to critiques

• Predictions outside the range of dependent variable

25



The defense of the LPM: responses to critiques

• Predictions outside the range of dependent variable
• Is prediction (for outliers) the goal?

25



The defense of the LPM: responses to critiques

• Predictions outside the range of dependent variable
• Is prediction (for outliers) the goal?

• Heteroskedasticity (violates OLS assumption)

25



The defense of the LPM: responses to critiques

• Predictions outside the range of dependent variable
• Is prediction (for outliers) the goal?

• Heteroskedasticity (violates OLS assumption)
• See Huber-White standard errors, other corrections for 

heteroskedasticity (robust option in Stata)

25



The defense of the LPM: responses to critiques

• Predictions outside the range of dependent variable
• Is prediction (for outliers) the goal?

• Heteroskedasticity (violates OLS assumption)
• See Huber-White standard errors, other corrections for 

heteroskedasticity (robust option in Stata)
• Non-normal errors (violates OLS assumption)

25



The defense of the LPM: responses to critiques

• Predictions outside the range of dependent variable
• Is prediction (for outliers) the goal?

• Heteroskedasticity (violates OLS assumption)
• See Huber-White standard errors, other corrections for 

heteroskedasticity (robust option in Stata)
• Non-normal errors (violates OLS assumption)

• That assumption is necessary for inference (i.e. valid 
standard errors) in small samples, but not asymptotically 
(see MHE section 3.1), and not for approximating the 
CEF     

25



The defense of the LPM: responses to critiques

• Predictions outside the range of dependent variable
• Is prediction (for outliers) the goal?

• Heteroskedasticity (violates OLS assumption)
• See Huber-White standard errors, other corrections for 

heteroskedasticity (robust option in Stata)
• Non-normal errors (violates OLS assumption)

• That assumption is necessary for inference (i.e. valid 
standard errors) in small samples, but not asymptotically 
(see MHE section 3.1), and not for approximating the 
CEF     

• Unrealistic for probability to be linear in X

25



The defense of the LPM: responses to critiques

• Predictions outside the range of dependent variable
• Is prediction (for outliers) the goal?

• Heteroskedasticity (violates OLS assumption)
• See Huber-White standard errors, other corrections for 

heteroskedasticity (robust option in Stata)
• Non-normal errors (violates OLS assumption)

• That assumption is necessary for inference (i.e. valid 
standard errors) in small samples, but not asymptotically 
(see MHE section 3.1), and not for approximating the 
CEF     

• Unrealistic for probability to be linear in X
• Yes, especially when probabilities are near 1 or 0 

(ceiling and floor effects); but is probit the right form?
25
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The defense of the LPM: continued

• Advantages of LPM:
• Ease of interpretation. Is that just because you don’t understand log 

odds?
• Best linear approximation to the CEF.

• Disadvantage of logit/probit: 
• Doesn’t directly give the Average Treatment Effect
• Can convert logit/probit estimates to something equivalent, and in 

simulations that is the same as the LPM estimate
• Other quantities of interest are sensitive to omitted variables — 

even variables uncorrelated with treatment (Carina Mood, Eur. Soc. 
Rev. 2010)

• When interest is in coefficient on binary variable (e.g. treatment), 
• CEF is linear with respect to variable of interest
• Logit vs LPM matters only if particular kind of covariate imbalance 
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The defense of the LPM: continued

“If the CEF is linear, as it is for a saturated model, [OLS] 
gives the CEF.… If the CEF is non-linear, [OLS] 
approximates the CEF. Usually it does it pretty well. 
Obviously, the LPM won’t give the true marginal effects 
from the right nonlinear model. But then, the same is 
true for the ‘wrong’ nonlinear model! The fact that we 
have a probit, a logit, and the LPM [shows] that we don’t 
know what the ‘right’ model is. Hence, there is a lot to 
be said for sticking to a linear regression function as 
compared to a fairly arbitrary choice of a non-linear 
one! Nonlinearity per se is a red herring.”

from MHE blog http://www.mostlyharmlesseconometrics.com/2012/07/probit-better-
than-lpm/

Steve Pischke

Gailmard pp 171-2

http://www.mostlyharmlesseconometrics.com/2012/07/probit-better-than-lpm/
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The defense of the LPM: continued

Original Figure 4 
(based on logit)
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The defense of the LPM: continued

My Figure 4 (based 
on logit)
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The defense of the LPM: continued

My Figure 4 (based 
on LPM)
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So why learn anything other than OLS?

There is a lot you could study: standard GLM models, other MLE 
estimation models, IRT measurement models, neural nets, random 
forests, Bayesian approaches (e.g. topic models for text) . . . .

My view: for estimation of treatment effects, you need to focus on 
research design, data collection, and presentation. Usually, statistical 
modeling beyond OLS (with standard error corrections) is a distraction.

But going beyond OLS can be useful for other goals:
• Prediction (e.g. probability of regime breakdown)
• Measurement (e.g. of regime types, pooling information from multiple 

expert surveys) 
• Description of relationships (e.g. regime types and development)
(Will statistical modeling help with explanation?)
So let’s get a taste of statistical modeling more generally.
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What is a statistical model?

A statistical model 
describes how a dependent 
variable (Y) is thought to 
have been generated.

Y

0.0 0.2 0.4 0.6 0.8 1.0

p(Y|D=0)

p(Y|D=1)

In any interesting statistical model, 
different units have different 
distributions, depending on the 
features of the unit (e.g. exposure to 
treatment vs. control, values of 
covariates).

More formally, a statistical 
model describes a set of 
probability distributions 
for a random variable (Y).

y
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Random variables and probability distributions

A random variable Y takes one of multiple possible 
(numerical) values depending on the outcome of an 
“experiment”.

Conventional notation: Y is the RV; y is a particular value.

The probability distribution of a random variable Y can be 
summarized by
• a cumulative distribution function (CDF) gives Pr(Y ≤ y)
• (if discrete) a probability mass function (PMF) gives Pr(Y=y)
• (if continuous) a probability density function (PDF) gives 

the derivative of the CDF at y   
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Normal PDF and CDF
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How probability works
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Single count (2)

Suppose we view the 
number of students 
sitting in row 3 as a 
Poisson random variable.

For what value of λ is 
the observed outcome 
most likely?

This is the most basic 
illustration of Maximum 
Likelihood Estimation 
(MLE) for λ.

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

y: Number of occurrences

P
r(

y|
λ

)
●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

λ= 2
λ= 3
λ= 4
λ= 5
λ= 6



40

Joint & conditional probability and independence 



40

Joint & conditional probability and independence 

For two events E and F, the probability of both events 
happening is written 

P(E,F ) or P (E \ F )

joint 
probability



40

Joint & conditional probability and independence 

For two events E and F, the probability of both events 
happening is written 

P(E,F ) or P (E \ F )

The probability of E happening given F is written 

P(E|F ) conditional 
probability

joint 
probability



40

Joint & conditional probability and independence 

For two events E and F, the probability of both events 
happening is written 

P(E,F ) or P (E \ F )

The probability of E happening given F is written 

P(E|F ) conditional 
probability

joint 
probability

P(E|F ) = P(E)

If E and F are independent, 



40

Joint & conditional probability and independence 

For two events E and F, the probability of both events 
happening is written 

P(E,F ) or P (E \ F )

The probability of E happening given F is written 

P(E|F ) conditional 
probability

joint 
probability

P(E|F ) = P(E)

If E and F are independent, 

and:

P (E,F ) = P (E)⇥ P (F )
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Maximum likelihood

Using θ to refer to parameters, consider:

ˆ✓(y) = argmax✓L(✓|y)

The maximum likelihood estimate (MLE) is the θ that makes 
the observed data (y) most likely. 

A general approach to statistical modeling: 
• write down f(y|θ) (pdf/pmf: probability of outcomes 

conditional on parameters), which is also L(θ|y) 
• observe data (y: actual outcomes)
• find parameters that maximize L(θ|y): the MLE! 
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Suppose we observe 
5, 2, 7, and 4 students.

row # students λ = row

3 5 0.1

4 2 0.15

5 7 0.10

6 4 0.13

Likelihood = 
column 

product (× 
1M)

206.52

Now suppose λ = β0 + 
β1×row, and find β0, β1 that 
maximize the likelihood.
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The likelihood function for the last MLE problem you just 
solved was:

iid assumption
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Scaling text: wordfish

Instead of counts of students in rows, let’s model something 
more interesting: the number of times a political party 
mentions a given word in its manifesto.
Suppose rate of use of word j by party i in year t is modeled 
as

and we assume word use is iid (conditional on          ). 
Can we estimate                                with MLE? OLS? 
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λ for party i using word j at time 
t:

Consider the words “and” and “deficit”. 

Q: What values of ψⱼ and βⱼ would 
you expect for these words?
A: For the word “and”: 
• high ψⱼ, because it is a common 
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• small (in magnitude) βⱼ because its 

frequency is not likely to differ 
between parties

For the word “deficit”:
• lower ψⱼ
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Scaling text: wordfish (2)

Consider this model for the rate 
λ for party i using word j at time 
t:

Consider the words “and” and “deficit”. 

Q: What values of ψⱼ and βⱼ would 
you expect for these words?
A: For the word “and”: 
• high ψⱼ, because it is a common 

word
• small (in magnitude) βⱼ because its 

frequency is not likely to differ 
between parties

For the word “deficit”:
• lower ψⱼ
• larger (in magnitude) βⱼ; for example, 

if the right talks about "deficits" more 
frequently and party positions are 
oriented so that right is positive,  βⱼ 
should be large and positive.  
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Slapin and 
Proksch, 2008

Estimated 
party positions 
in Germany
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How does OLS fit in?

OLS has attractive predictive/descriptive features 
independent of a statistical model. 
Most importantly, the solution to

argmin↵,�

nX

i=1

✓
yi � ↵� �xi

◆2

will give the best (minimum mean squared error) linear 
approximation of Y|X and E[Y|X] (the CEF) regardless of 
linearity of CEF, distribution of errors.* (Inference also 
works asymptotically.)

*This is main message of MHE 3.1 and Gailmard 132-135; see also Gailmard 314 ff.
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How does OLS fit in?

OLS has attractive predictive/descriptive features 
independent of a statistical model. 
Most importantly, the solution to

argmin↵,�

nX

i=1

✓
yi � ↵� �xi

◆2

will give the best (minimum mean squared error) linear 
approximation of Y|X and E[Y|X] (the CEF) regardless of 
linearity of CEF, distribution of errors.* (Inference also 
works asymptotically.)

But the OLS coefficients are also the MLE in a statistical model where 
Y ~ N(α + βX, σ²) (i.e. mean of α + βX, normal error with variance 
σ²).

*This is main message of MHE 3.1 and Gailmard 132-135; see also Gailmard 314 ff.
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General advice

• Keep it simple
• Keep it linked to an interesting research question
• Keep it visual: before (and after) running a model, look at the data!
• Learn a little about a lot of techniques (so you can recognize when 

you need to know more) and a lot about something
• Get good at Stata, R, or both
• There are many ways to contribute. Choose some combination of:

• better data
• better design (e.g. causal inference)
• better measurement
• better theory

Often one of these makes possible another.
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Jones’s “New Portable 
Orrery” (1794)

“All models are wrong, but some are useful.” George Box


