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So far

• Regression (OLS)
• RCTs
• Matching
• Instrumental variables
• RDD
• Diff-in-diff/panel

Also:
• Logistic regression

What else do we need?
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Conventional approach: tour of Generalized Linear Models (GLMs)

If your dependent variable is . . . …you need this model.
See this Stata 

command.

Continuous (and unbounded) OLS regress

Binary (e.g. join WTO or not) Logit
Probit

logit
probit

A count (e.g. 0, 1, 10 wars) Poisson
Negative binomial

poisson
nbreg

Ordered categories (e.g. “opposed”, 
“neutral”, in favor”)

Ordinal logit
Ordinal probit

ologit
oprobit

Non-ordered categories (e.g. Tory, 
Labour, Lib Dem; Christian, Muslim, 

Jewish, atheist) 

Multinomial logit, 
conditional logit

mlogit
clogit

A measure of survival or duration (e.g. 
cabinet or war duration) Survival or hazard model stcox

See glm (generalized linear model) package for many of these.
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Generalized linear models Gailmard p. 146: “invertible function of 
the model parameter is expressed as 
a linear function of the covariate(s)”
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The next three weeks

• Lab: intuition and practice with GLMs in Stata
• Lecture & reading: broader perspective on the uses of 

statistical modeling; fundamentals of probability and 
estimation
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The big picture

Learning to use/interpret other GLMs (probit, ordinal logit, 
etc) allows you to extend what you do with OLS

(prediction/description; causal inference under “selection 
on observables”)

to other types of DVs. (What if we just use OLS?)
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The big picture

Learning to use/interpret other GLMs (probit, ordinal logit, 
etc) allows you to extend what you do with OLS

(prediction/description; causal inference under “selection 
on observables”)

to other types of DVs. (What if we just use OLS?)

Understanding modeling principles behind GLMs, you get
• new measurement strategies (→ outcomes, covariates)
• structural models
• multilevel models and other dependence structures
• insights into inference (std errors, etc)
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The big picture (2)

Building statistical models can (should) be fun! 

But don’t lose sight of the goal: 

“On one hand, we would like our models to be 
consistent with any functional form restrictions 
known to be true. On the other, attempts at this may 
complicate estimation and inference, for little payoff. 
Worst of all, the technical complexity of nonlinear 
models seems to cause authors to 'wax 
econometric,' an effort that may come at the expense 
of attention to substantive issues of importance.”

from ”Reply” to comments on “Estimation of Limited Dependent Variable Models 
With Dummy Endogenous Regressors: Simple Strategies for Empirical Practice” 
JBES 2001

Josh Angrist
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What is a model?

Jones’s “New Portable 
Orrery” (1794)

“All models are wrong, but some are useful.” George Box



10

What is a statistical model?

A statistical model 
describes how a dependent 
variable (Y) is thought to 
have been generated.
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What is a statistical model?

A statistical model 
describes how a dependent 
variable (Y) is thought to 
have been generated.

Y

0.0 0.2 0.4 0.6 0.8 1.0

p(Y|D=0)

p(Y|D=1)

In any interesting statistical model, 
different units have different 
distributions, depending on the 
features of the unit (e.g. exposure to 
treatment vs. control, values of 
covariates).

More formally, a statistical 
model describes a set of 
probability distributions 
for a random variable (Y).

y
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A random variable Y takes one of multiple possible (numerical) 
values depending on the outcome of an “experiment”.

Conventional notation: Y is the RV; y is a particular value.

The probability distribution of a random variable Y can be 
summarized by
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Normal PDF and CDF
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How probability works
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…what data 
should we expect 
to observe?

Gailmard 4
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How (classical) statistics works

y

Y

0 5 10 15

µ= 3, σ = 1
µ= 6, σ = 2.5

…what set of 
probability 
distributions… 

characterize the 
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Poisson PMF

Characterizes count of 
events (e.g. false 
convictions, horse kicks) 
observed in a fixed 
interval when 
• events are independent
• rate of occurrence 

(probability per unit 
time) is constant 
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Single count (2)
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Single count (2)

Suppose we view the 
number of students 
sitting in row 3 as a 
Poisson random 
variable.

For what value of λ is 
the observed 
outcome most likely?
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Joint & conditional probability and independence 

For two events E and F, the probability of both events 
happening is written 

P(E,F ) or P (E \ F )

The probability of E happening given F is written 

P(E|F ) conditional 
probability

joint 
probability

P(E|F ) = P(E)

If E and F are independent, 

and:

P (E,F ) = P (E)⇥ P (F )
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Vector of counts

Suppose we have 5, 2, 7, 
4 students in these rows.

SOLUTIONS

λ = 2 λ = 5

5 0.04 0.18

2 0.27 0.08

7 0.003 0.10

4 0.10 0.18

Product X 
1M 3.03 270.84
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Vector of counts (2)
ACTIVITY!!!
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Vector of counts (2)

Suppose we view the 
number of students 
sitting in each row as 
an independent (iid) 
Poisson random 
variable.
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Vector of counts (2)

Suppose we view the 
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Vector of counts

Suppose we have 5, 2, 7, 4 students in these rows. Then approximately:
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λ = 2 λ = 3 λ = 4 λ = 5 λ = 6

5 0.04 0.10 0.16 0.18 0.16
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4 0.10 0.17 0.20 0.18 0.13
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X 1M 3.03 82.00 266.39 270.84 132.07
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Maximum likelihood

Using θ to refer to parameters, consider:

ˆ✓(y) = argmax✓L(✓|y)

The maximum likelihood estimate (MLE) is the θ that makes 
the observed data (y) most likely. 

A general approach to statistical modeling: 
• write down f(y|θ) (pdf/pmf: probability of outcomes 

conditional on parameters), which is also L(θ|y) 
• observe data (y: actual outcomes)
• find parameters that maximize L(θ|y): the MLE! 
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sitting in each row as an 
independent Poisson 
random variable, with λ 
= xᵢ, where xᵢ is the 
number of the row.

ACTIVITY!!!



26

Vector of counts with a covariate

Suppose we view the 
number of students 
sitting in each row as an 
independent Poisson 
random variable, with λ 
= xᵢ, where xᵢ is the 
number of the row.

How likely is the 
observed outcome for 
rows 3-6?
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5 7 0.10

6 4 0.13
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Suppose we view the 
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Vector of counts with a covariate (2)

Suppose we view the 
number of students 
sitting in each row as an 
independent Poisson 
random variable, with λ 
= β xᵢ, where xᵢ is the 
number of the row.

1) If β = 1, how likely is 
the observed outcome 
for rows 3-6?

2) If β = .5, how likely is 
the observed outcome 
for rows 3-6?
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Vector of counts with a covariate (2)

Suppose we observe 
5, 2, 7, and 4 students.
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Maximum likelihood (common notation)

The likelihood function for the last MLE problem you just 
solved was:

iid assumption
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We said: a general approach to statistical modeling: 
• write down f(y|θ) (pdf/pmf: probability of outcomes 

conditional on parameters), which is also L(θ|y) 
• observe data (y: actual outcomes)
• find parameters that maximize L(θ|y): the MLE! 
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Some questions about statistical modeling

We said: a general approach to statistical modeling: 
• write down f(y|θ) (pdf/pmf: probability of outcomes 

conditional on parameters), which is also L(θ|y) 
• observe data (y: actual outcomes)
• find parameters that maximize L(θ|y): the MLE! 

Some questions: 
• What interesting likelihoods could you write down?
• Why is the data generating process f(y|θ) random? 
• What does this have to do with OLS? 
• How do we know/choose f(y|θ) — and thus L(θ|y)?
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What does the randomness in statistical models mean?

The data we observe is stochastic because of:
1. Sampling uncertainty (units’ outcomes are 

deterministic, but which units we see isn’t)
2. Theoretical uncertainty/incompleteness 

(the stuff we don’t know about or ignore) 
3. Fundamental uncertainty (things would 

happen differently even in a “do-over”*)

1

Sean Gailmard

*Quantum uncertainty? People playing 
mixed strategies? see p. 182
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How does OLS fit in?

OLS has attractive predictive/descriptive features 
independent of a statistical model. Most importantly, the 
solution to

argmin↵,�

nX

i=1

✓
yi � ↵� �xi

◆2

will give the best (minimum mean squared error) linear 
approximation of Y|X and E[Y|X] (the CEF) regardless of 
linearity of CEF, distribution of errors.* (Inference also 
works asymptotically.)

*This is main message of MHE 3.1 and Gailmard 132-135; see also Gailmard 314 ff.
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How does OLS fit in?

OLS has attractive predictive/descriptive features 
independent of a statistical model. Most importantly, the 
solution to

argmin↵,�

nX

i=1

✓
yi � ↵� �xi

◆2

will give the best (minimum mean squared error) linear 
approximation of Y|X and E[Y|X] (the CEF) regardless of 
linearity of CEF, distribution of errors.* (Inference also 
works asymptotically.)

But the OLS coefficients are also the MLE in a statistical model 
where Y ~ N(α + βX, σ²).

*This is main message of MHE 3.1 and Gailmard 132-135; see also Gailmard 314 ff.
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How do we know/choose the likelihood?
1

Q: What type of 
probability distribution 
produced the outcome 
at left?  

Histogram of observed Y

0 2 4 6 8 10

Y

0 5 10 15

µ= 3, σ = 1
µ= 6, σ = 2.5

A: Normal distribution, 
with μ uniformly 
distributed from 0 to 
10 and small σ²
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How do we know/choose the likelihood (2)?
1

Researchers choose parametric family (Normal, Poisson, etc) of 
the stochastic part 
• for good theoretical reasons (e.g. Y is a count in a period, with 

constant rate; Y is the sum of random variables)   
• to avoid predicting impossible values of Y (range matching)
• for flexibility
• convenience/interpretability (e.g. logit)

The systematic part is more important: how X relates to 
parameters of the distribution.

In standard GLMs, this is just like OLS regression.
More generally, statistical models can reflect any assumption 
about what factors matter and how.
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How do we know/choose the likelihood? (3)

‘Statistics cannot tell a substantive researcher 
whether a particular model is “right” or 
“wrong” for a particular application. Statistics 
works well as a complement to researchers 
who figure that out for themselves based on 
their knowledge of what they are studying; 
statistics then offers a way to learn as much as 
possible about the DGP and to estimate the 
uncertainty about what was actually learned.’ 

1

Sean Gailmard

Gailmard, p. 316
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Statistical models and research questions

Research questions in social science are never directly about 
statistical models.

And if questions are about observed data, no model is necessary. 
For example:
• On this survey question, is the proportion of German respondents 

answering ‘Yes’ higher than the proportion of French respondents 
answering ‘Yes’?

But they might be about elements estimated in statistical models:
• Is the German public ideologically more conservative than the 

French public?
• Is the congruence between legislators’ policy preferences and 

public opinion closer in German states than in French regions?

1
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1

Analysis on nytimes.com using Martin-Quinn scores  (http://
mqscores.berkeley.edu/) See “Dynamic Ideal Point Estimation via Markov Chain 
Monte Carlo for the U.S. Supreme Court, 1953-1999”, Andrew D. Martin and 
Kevin M. Quinn 2002.

http://nytimes.com
http://mqscores.berkeley.edu/
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Statistical models and causal inference

We ignored statistical models in weeks 1-5.

But OLS regression connects to a model: 
• MHE view: OLS provides linear approximation to the DGP, where standard 
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Statistical models and causal inference

We ignored statistical models in weeks 1-5.

But OLS regression connects to a model: 
• MHE view: OLS provides linear approximation to the DGP, where standard 

errors approach true sampling distribution as n increases
• classical view: under assumptions including normal errors, OLS provides 

unbiased estimate of linear DGP parameters, good standard errors even in 
small samples

Alternative approaches:
• Randomization inference in Fisher’s exact test: inference about the “sharp 

null” with no assumptions about statistical model; the “sample” is the 
population of interest

• “Finite Population Causal Standard Errors” (Abadie, Susan Athey, Imbens, 
Wooldridge working paper): causal inference requires a different 
interpretation of standard errors because it is inference about missing 
potential outcomes, not DGP parameters
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Coming up

Lab: practice with GLMs
Next two lectures: 
• Ordinal probit model (in application) 
• Can I just use OLS?
• Measurement/scaling models  
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