Formal Analysis: Costly signaling (tying hands)

Andy Eggers

Week 7 Session 1

Tying hands

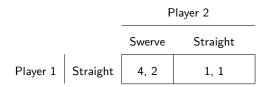
Throwing out the steering wheel

Game of chicken

Player 2

		Swerve	Straight
Player 1	Swerve	3, 3	2, 4
	Straight	4, 2	1, 1

Game of chicken after 1 removes steering wheel

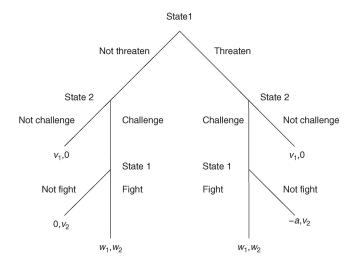


There are many accounts of military conquest in which the conqueror is said to have eliminated options of escape.

William the Conqueror (England, 1066) and Hernán Cortés (Mexico, 1519-1521) are said to have **burned their ships** on arrival to make escape impossible.

What could motivate this behavior? How could we use a model to explore the possible logic?

Actions that change future payoffs



An alternative approach

Assume probability of conflict is CSF, where e_i is *i*'s effort:

$$\mathsf{Pr}(1 \text{ wins}) \equiv p_1 \equiv \frac{e_1}{e_1 + e_2}$$

The value of winning is 1. The value of losing is v_l . Expending effort e_1 costs γe_1 .

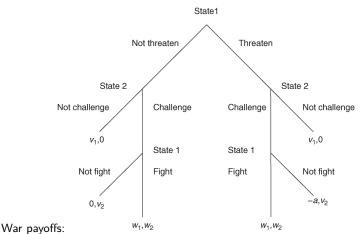
Then expected utility is:

$$rac{e_1}{e_1+e_2} + \left(1 - rac{e_1}{e_1+e_2}
ight) v_l - e_1$$

What can player 1 accomplish by reducing v_l (e.g. by making escape impossible)?

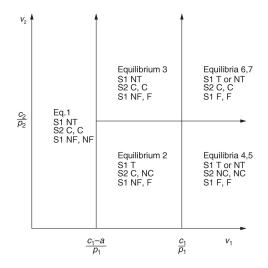
Analysis of the costly signaling game in Kydd: complete information case

The complete information case



Player 1: w₁ = p₁v₁ - c₁ ⇒ if challenged, 1 fights if
 v₁ > c₁/p₁, assuming did not issue threat
 v₁ > c₁/p₁ - a, assuming did issue threat
 Player 2: w₂ = p₂v₂ - c₂ ⇒ if 1 will fight, 2 challenges if v₂ > c₂/p₂

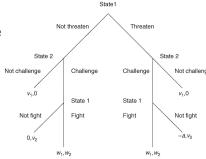
The complete information case (2)



Q: Under what conditions would it be valuable to state 1 to be able to impose a cost *a* on backing down from a threat?

Q: Under what conditions would it be valuable to state 1 to be able to impose a cost *a* on backing down from a threat?

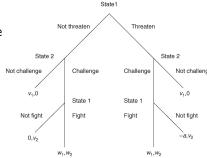
A: When, by issuing the threat, state 1 could convince state 2 not to challlenge.



Q: Under what conditions would it be valuable to state 1 to be able to impose a cost *a* on backing down from a threat?

A: When, by issuing the threat, state 1 could convince state 2 not to challlenge.

Q: When would that be the case?

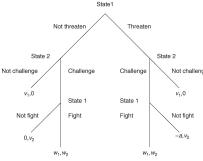


Q: Under what conditions would it be valuable to state 1 to be able to impose a cost *a* on backing down from a threat?

A: When, by issuing the threat, state 1 could convince state 2 not to challenge.

Q: When would that be the case?

A: When state 1 is the type who would **Fight** only if it has made a threat, and state 2 is the type who would **Not challenge** only if it knew state 1 would **Fight**.



Making a threat (creating a cost for backing down) is valuable:

"When state 1 is the type who would **Fight** only if it has made a threat ...":

• would not fight if no threat $\implies p_1v_1 - c < 0$, i.e. $v_1 < \frac{c_1}{p_1}$

- would fight if threat $\implies p_1v_1 c > -a$, i.e. $v_1 > \frac{c_1 a}{p_1}$
- together: $v_1 \in \left(\frac{c_1-a}{p_1}, \frac{c_1}{p_1}\right)$
- "… and state 2 is the type who would Not challenge only if it knew state 1 would Fight:
 - would challenge if it knew state 1 would not fight $\implies v_2 > 0$
 - would not challenge if it knew state 1 would fight \implies $p_2v_2 - c_2 < 0$, i.e. $v_2 < \frac{c_2}{p_2}$

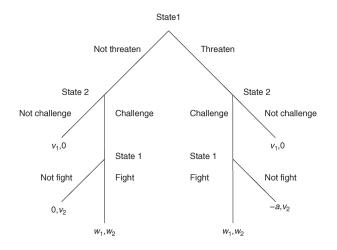
• together: $v_2 \in \left(0, \frac{c_2}{p_2}\right)$

<i>V</i> ₂	t í	ł	t
2 wants to challenge even if it means war.	1 would be finds	If challenged, 1 will fight iff threat issued. But 2 would rather fight than not challenge. So 2 will challenge. So 1 won't threaten. I does not threaten, 2 challenges, and 1 backs down in eqm.	If challenged, 1 will fight. But 2 would rather fight than not challenge. So 2 will challenge. And 1 will fight. 1 may or may not threaten, 2 challenges, and 1 fights in equilibrium.
$\frac{c_2}{p_2}$	1 wouldn't fight. So 2 will challenge. So 1 won't threaten.		
2 doesn't want to challenge if it means war.	1 does not threaten, 2 challenges and 1 backs down in eqm.	If challenged, 1 will fight iff threat issued. 2 would rather not challenge than fight. So 2 will challenge only if threat not issued. So 1 will threaten. 1 threatens and 2 backs down in eqm.	If challenged, 1 will fight. But 2 would rather not challenge than fight. So 2 will not challenge. 1 may or may not threaten. 2 backs down in equilibrium.
	If challenged, 1 doesn't C1 want to fight even after making a threat.	-a If challenged, 1 wants to fight only after making a threat.	

Analysis of the costly signaling game in Kydd: incomplete information case

What does incomplete information mean here?

The values $v_1 \& v_2$ are distributed according to $f_1 \& f_2$ ($F_1 \& F_2$). Backward induction harder when you don't know the other player's type: how?



Approach to solving the incomplete information game

We posit a cutoff v_1^* : types of state 1 with $v_1 > v_1^*$ threaten.

The state with $v_1 = v_1^*$ must be indifferent between threatening and not threatening.

Two cases:

- ▶ **no-bluffing equilibrium**: cutoff is between $\frac{c_1-a}{p_1}$ and $\frac{c_1}{p_1}$, so the type at the threshold is one who would fight if challenged
- bluffing equilibrium: cutoff is below c1-a, so the type at the threshold is one who would not fight if challenged

Approach to solving the incomplete information game: no-bluff equilibrium

No-bluffing equilibrium: threat cutoff is between $\frac{c_1-a}{p_1}$ and $\frac{c_1}{p_1}$, so the type at the threshold is one who would fight if challenged

State 2 knows it will have a war if it challenges a state who has threatened \implies state 2 challenges only if $v_2 > \frac{c_2}{p_2} \equiv v_2^*$.

Where should state 1's threat cutoff v_1^* be?

Approach to solving the incomplete information game: no-bluff equilibrium (2)

Where should state 1's threat cutoff v_1^* be?

If threaten, then two possibilities:

▶
$$v_2 < v_2^*$$
: state 2 does not challenge, state 1 gets v_1

$$\blacktriangleright$$
 $v_2 > v_2^*$: state 2 challenges, state 1 gets $p_1v_1 - c_1$

If not threaten, then state 2 will challenge and state 1 will get 0. How do we solve for the optimal v_1^* ? Approach to solving the incomplete information game: no-bluff equilibrium (3)

The probability that 2 challenges is $F(v_2^*)$. So state 1's payoff from threatening is

$$F_2(v_2^*)v_1 + (1 - F_2(v_2^*))(p_1v_1^* - c_1)$$

Set this equal to 0 and solve for v_1 .

The bluffing equilibrium

Bluffing equilibrium: threat cutoff is between 0 and $\frac{c_1-a}{p_1}$, so the type at the threshold is one who would **not** fight if challenged

Can solve for v_1^* the same way (given v_2^*):

- if threaten,
 - with probability $F_2(v_2^*)$ will not be challenged (and so get v_1)
 - with probability $1 F_2(v_2^*)$ will be challenged and back down (and so get -a)
- if don't threaten, will be challenged and back down (and so get 0)

But 2's decision about what to do when threatened (i.e. choice of cutoff v_2^*) is more complicated than in no-bluffing case: threat might be a bluff, so response to threat depends on v_1^*

Costly signaling game: interpretation

- Think of no-bluffing equilibrium. Why don't types of state 1 with v₁ < v₁^{*} threaten?
- Think of the bluffing equilibrium. Why don't types of state 1 with v₁ < v₁^{*} threaten?
- The threat in this game can be read as, "I will fight if you challenge me." Why should this affect state 2's behavior at all?
- How does this relate to the signaling model of education we discussed?