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Gehlbach opens Chapter 2 with a challenging problem. To make it more digestible, let’s look at a simpler

version.

How is this different from the problem in Gehlbach 2.1.1?

First, we’ll assume just two groups, group 1 and group 2. This makes the problem easier to solve (notably,

you don’t need to solve a Lagrangian), but you can still see most of the key points from the model.

Second, we will assume that ω1 = ω2 = 1. This parameter measures something like “ideological polarization”

or “attention to this policy area” in the two groups – for higher ω, the vote share in the group responds more

to changes in the parties’ policy platforms.

I will also provide more detailed explanation of the model than Gehlbach does. I will be much more explicit

about each step, provide some figures, and do some numerical checking and visualization.

The model

A society is organized into two groups, which we will call 1 and 2. The share of citizens in group 1 is α (so

the share in group 2 is 1− α). Citizens in group g have a pre-tax income of yg.

Two parties, A and B, compete by offering tax-and-transfer platforms. Party A’s platform can be denoted

t1A, t2A, where t1A is the net per-person transfer to members of group 1 proposed by party A and t2A is the

net per-person transfer to members of group 2. Party B’s platform is similarly denoted t1B , t2B .

Tax-and-transfer platforms must maintain budget balance, i.e. αt1g + (1− α)t2g = 0 for g ∈ {A,B}. This

means that either t1g = t2g = 0, i.e. neither group gains or loses anything, or one group is taxed to pay the

other. Also, a group can’t be taxed beyond its income, e.g. t1A can’t be larger than y1.

Parties seek to maximize their vote share.

Think at this point about what would happen if voters in the model cared only about the net transfer they

received, e.g. if members of group 1 would all vote for party A if t1A > t1B , all vote for party B if t1A < t1B ,

and split their votes in half if t1A = t1B. (This is the assumption about voter behavior made in all of the
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models in Chapter 1.) The only Nash equilibrium of this game has both parties taxing the smaller group

for all of its income to give the larger group the largest possible transfer, with support being split evenly

between the two parties.

Instead, we will assume that voters have some other concern, such that if one party improves the net transfer

it offers to members of a group, it will win some of the voters in that group but not all. Specifically, we

assume that voter i in group g votes for party A if

v(yg + tgA) > v(yg + tgB) + ηi

where v is a monotonically increasing and concave function. The function v could look like this, for instance:

x

v(x)

The variable ηi captures voter i’s predisposition in favor (or against, if negative) party B. We assume that

ηi is distributed uniformly in each group on the interval
[
− 1

2 ,
1
2

]
, and we will assume that neither group

entirely supports one party.1

To start analyzing how the parties choose platforms to maximize their vote share, we must first state the

parties’ vote shares in terms of the choice variables (i.e. policy platforms, i.e. tax-and-transfer programs) and

model parameters. Note first that we can rearrange the expression above to say that a voter in group g votes

for party A if

ηi < v(yg + tgA)− v(yg + tgB).

Let η∗i = v(yg + tgA)− v(yg + tgB) denote the value of ηi such that the voter is indifferent between the two

parties. Then voting behavior in group g can be graphically described like this:
1Technically, this condition is |v(yg + tgA)− v(yg + tgB)| < 1/2 for g ∈ {1, 2}.
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Now, to convert this into party A’s vote share in this group, we need to calculate the area of the red rectangle.

The height of a uniform density that runs from −1/2 to 1/2 must be one. (This is because the area under a

density must be one.) Thus the area of the red rectangle (i.e. party A’s vote share in this group) must be

η∗i −
(
− 1

2
)

= 1
2 + v(yg + tgA)− v(yg + tgB). Combining the two groups, party A’s overall vote share can be

written

VA = 1
2 + α

(
v(y1 + t1A)− v(y1 + t1B)

)
+ (1− α)

(
v(y2 + t2A)− v(y2 + t2B)

)
.

Party A’s problem is to choose t1A, t2A to maximize this expression, subject to the constraint that αt1A +

(1− α)t2A = 0.

If we had more groups, at this point we would use the Lagrangian technique used in Gehlbach’s more

complicated version of this problem. Instead we will do something simpler. From the budget constraint, we

know that t2A = − α
1−α t1A. We can then substitute that into the expression for party A’s vote share and

choose t1A to find a maximum. (This turns a “constrained optimization” problem into an “unconstrained

optimization” problem.)

That is, we’re going to choose t1A to maximize

VA = 1
2 + α

(
v(y1 + t1A)− v(y1 + t1B)

)
+ (1− α)

(
v

(
y2 −

α

1− αt1A
)
− v(y2 + t2B)

)
.

Before we do that, let’s make it look less intimidating by taking out terms that don’t depend on t1A. We

want to choose t1A to maximize

ṼA = αv(y1 + t1A) + (1− α)v
(
y2 −

α

1− αt1A
)

+ C.
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Now we get the first-order condition:

∂ṼA
∂t1A

= αv′(y1 + t1A)− αv′
(
y2 −

α

1− αt1A
)

= 0

Then we rearrange and solve for t1A:

v′(y1 + t1A) = v′
(
y2 −

α

1− αt1A
)

(1)

y1 + t1A = y2 −
α

1− αt1A (2)

t∗1A = (1− α)(y2 − y1) (3)

The second line follows from the assumption that v is concave, meaning that the first derivative is monotonically

decreasing (and thus v′(x) = v′(y) ⇐⇒ x = y).

Above we noted that t2A = − α
1−α t1A. We can now substitute t∗1A into this expression, which yields

t∗2A = α(y1 − y2).

Note that although the vote share won by party A depends on what party B does, party A’s optimal move

does not. This is because increasing a group’s net transfer by a given amount wins party A the same number

of voters regardless of what party B is doing. (This is a benefit of assuming a uniform distribution of voters

in each group – things would be even more complicated without this assumption.)

Because the game is symmetric (i.e. party A and party B are interchangeable), we know that the solution for

party B is the same: t∗1B , t∗2B = (1− α)(y2 − y1), α(y1 − y2).

Analysis of the solution

Our solution is that t∗1A = t∗1B = (1− α)(y2 − y1) and t∗2A = t∗2B = α(y1 − y2). Let’s try to interpret this.

First, note that the net transfer to group 1 and group 2 must be of opposite signs: we must be either taking

from 1 to give to 2 if y1 > y2, or the reverse if y2 > y1, or neither if y1 = y2. We knew from the budget

constraint that we would be taking from one to give to the other, so it would be worrying if this were not in

our solution.

Second, note that the solution involves taxing the richer group and giving the proceeds to the poorer group:
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t∗1 is positive if and only if y2 > y1. So, this is redistribution driven purely by electoral incentives. Ultimately,

this reflects the assumption that v is concave and the distribution of ηi is identical across groups, which

ensures that voter utility (and thus vote share) is more responsive to a given transfer or tax in the poorer

group.

Third, the magnitude of the transfer is inversely related to the relative size of the group: the larger group

gets a smaller per-person tax or benefit. This must be true given the budget constraint.

Illustration of the solution

We can gain a little more insight into the problem (and check that our calculations above are correct) by

assuming a specific function for v, plugging in numbers for α, y1, and y2, and checking if the solutions we

calculated above really do maximize vote share. I will do this in R.

First, let’s assume that v is the square root of its argument:

v.func = function(x){sqrt(x)}

Then we write a function for party A’s vote share, mirroring the expression we worked out above for party

A’s total vote share:

VA = 1
2 + α

(
v(y1 + t1A)− v(y1 + t1B)

)
+ (1− α)

(
v(y2 + t2A)− v(y2 + t2B)

)
Here is the R code:

vote.share.1 = function(t_1A, t_2A, t_1B, t_2B, alpha, y_1, y_2) {

1/2 + alpha * (v.func(y_1 + t_1A) - v.func(y_1 + t_1B)) + (1 - alpha) *

(v.func(y_2 + t_2A) - v.func(y_2 + t_2B))

}

Next we store some assumed values for the exogenous variables:

alpha = .4

y_1 = 1

y_2 = 2

We will assume that party B is proposing the transfers implied by our solution above:
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(t_1B = (1 - alpha)*(y_2 - y_1))

## [1] 0.6

(t_2B = alpha*(y_1 - y_2))

## [1] -0.4

Next we calculate the vote share for a range of possible values of t1A and t2A:

t_1s = seq(-1, 1, 0.01) # the values of t_1A at which we will calculate vote share

t_2s = seq(-1, 1, 0.01) # same for t_2A

z = matrix(NA, nrow = length(t_2s), ncol = length(t_1s)) # the matrix in which we

# will store the vote shares -- the 'z' matrix

# we loop over over possible combinations of t_1 and t_2:

for (i in 1:length(t_1s)) {

for (j in 1:length(t_2s)) {

# for each combo, we calculate vote share and store in the 'z' matrix

z[i, j] = vote.share.1(t_1A = t_1s[i], t_2A = t_2s[j], t_1B = t_1B,

t_2B = t_2B, alpha = alpha, y_1 = y_1, y_2 = y_2)

}

}

Now we use the contour() command to plot vote share as a function of t1A and t2A:

# now we plot it:

contour(t_1s, t_2s, z, col = "blue", xlab = expression(t[1]), ylab = expression(t[2]))
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This looks nice, and it should make sense: the larger the net transfers t1A and t2A, the larger the vote share

party A can expect. Of course, we know that not every combination of net transfers is feasible. In fact, the

budget constraint imposes the condition that

t2A = − α

1− αt1A.

On our contour plot this is a line with intercept of 0 and slope of − α
1−α . So let’s plot this line and show the

point that we calculated as the optimum policy:

# plot the contour again

contour(t_1s, t_2s, z, col = "blue", xlab = expression(t[1]), ylab = expression(t[2]))

# now we add the "budget constraint"

abline(a = 0, b = -(alpha/(1-alpha)), col = "red", lwd = 2)

# and plot the solution that we calculated above

points(t_1B, t_2B, pch = 19)
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The optimum policy is the point on the budget line that yields the highest vote share for party A. It is the

point of tangency between the contour lines of the vote share function and the budget line.

This figure reassures me that my calculations are correct: it makes sense for the solution to be at the point of

tangency indicated, and it makes sense that when both parties are playing the optimal strategy they split the

vote evenly between them.

I can redo the exercise entering alternative parameters to confirm that it wasn’t just a fluke that the figure

gives me the same answer as my calculations. I can also confirm that changing the net transfers offered by

party B changes the vote shares for A but does not change A’s optimal action.

In practice, when I do exercises like this I very rarely get the right answer the first time. I either have an

error in my calculations, an error in my code, or both. But when the two sets of analysis do agree, I am

much more confident that I haven’t made a mistake.
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