Formal Analysis

Andy Eggers

15 Jan 2019

Plan for today

- ▶ What is formal theory for?
- ► Overview of the course & syllabus
- ▶ Preferences, rationality, utility, expected utility

What is formal theory for?

What are theories?

Theories are things we believe to be true, at least provisionally.

Theories are claims that make sense of regularities/patterns in the world.

What do we do with theories?

- Prediction
 - ► How would we expect X to affect Y?
- Explanation
 - X and Y are related. Why?

What's wrong with the theory in most dissertations?

- No theory
 - No reason to expect the predicted pattern, or any pattern
 - No explanation for the finding
- ► Bad theory
 - Conclusions don't follow from assumptions
 - Some assumptions not necessary
 - Theory doesn't address important features of problem
 - Assumptions not justified, too specific
- Poorly motivated theory
 - ► No puzzle to explain
 - Prediction obvious or produced by many theories

Theories and theory testing: physics

Hypothetico-deductive ideal: we believe one theory (Newtonian physics); we have another candidate theory (general relativity).

Theories and theory testing: physics

Hypothetico-deductive ideal: we believe one theory (Newtonian physics); we have another candidate theory (general relativity).

We design a **crucial experiment** for which the two theories make different predictions.

Theories and theory testing: physics

Hypothetico-deductive ideal: we believe one theory (Newtonian physics); we have another candidate theory (general relativity).

We design a **crucial experiment** for which the two theories make different predictions.

We run the experiment and discard one of the theories.

Social science reality: The social world is very complicated, so our theories are probabilistic, scope-limited, partial \rightarrow experiments rarely crucial. Theories rarely discarded.

Social science reality: The social world is very complicated, so our theories are probabilistic, scope-limited, partial \rightarrow experiments rarely crucial. Theories rarely discarded.

Often, we want to **clarify** relevant mechanisms, all of which likely play a role; compare their usefulness in prediction/explanation.

Social science reality: The social world is very complicated, so our theories are probabilistic, scope-limited, partial \rightarrow experiments rarely crucial. Theories rarely discarded.

Often, we want to **clarify** relevant mechanisms, all of which likely play a role; compare their usefulness in prediction/explanation.

Physics theory: Elaborating theories to develop crucial experiments, keep only what works best

Social science reality: The social world is very complicated, so our theories are probabilistic, scope-limited, partial \rightarrow experiments rarely crucial. Theories rarely discarded.

Often, we want to **clarify** relevant mechanisms, all of which likely play a role; compare their usefulness in prediction/explanation.

Physics theory: Elaborating theories to develop crucial experiments, keep only what works best

Social science theory: Elaborating theories to improve internal coherence, make judgments about what is useful

Why should theory be formal?

Doesn't have to be.

Why should theory be formal?

Doesn't have to be. But can be useful for

- Development of theory
 - Logical consistency
 - ▶ Abstraction → connections
- Communication of theory (depends on the crowd)
 - ▶ **Good**: abstraction and simplicity clarify and enlighten
 - Bad: notation and complexity overwhelm and confuse

Types of formal theory

- Decision theory: how agents optimize, e.g. partisan voter in event of scandal
- ► Game theory: how optimizing agents interact, e.g. politician and voter

Misconceptions about formal theory

People think:

- Formal theory necessarily assumes that agents are
 - selfish (vs. altruistic)
 - materialistic (vs. e.g. idealistic)
 - perfectly informed
 - capable of heroic computations
- ▶ The best model has the most realistic assumptions

Misconceptions about formal theory

People think:

- Formal theory necessarily assumes that agents are
 - selfish (vs. altruistic)
 - materialistic (vs. e.g. idealistic)
 - perfectly informed
 - capable of heroic computations
- ▶ The best model has the most realistic assumptions

Actually:

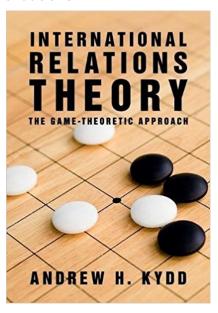
- Agents may be optimizing anything, and with constraints on info, processing power, etc
- "All models are wrong, but some are useful" (George Box)

Pitfalls of formal theory

- Formal theorists like **interesting** theories, but sometimes the best theory is not interesting: e.g. domination.
- ▶ Modeling assumptions become beliefs about the world.
- ▶ They get carried away with technical challenges.

Overview of course

Textbooks



ANALYTICAL METHODS FOR SOCIAL RESEARCH

Formal Models of Domestic Politics

SCOTT GEHLBACH

Schedule

Wk.Sess	Topic	Reading
1.1	Introduction and utility theory	Kydd 2
1.2	Strategic settings	Kydd 3
2.1	Bargaining	Kydd 4
2.2	Electoral competition under certainty	Gehlbach 1
3.1	Electoral competition under uncertainty	Gehlbach 2
3.2	Application (Problem set 1 due , January 31)	
4.1	Power change and war	Kydd 5
4.2	Private information and war	Kydd 6
5.1	Special interest politics	Gehlbach 3.1-3.4
5.2	Veto players	Gehlbach 4.1-4.4
6.1	Application (Problem set 2 due, February 19)	
6.2	Diplomacy and cheap talk	Kydd 9.1-9.3
7.1	Signaling	Kydd 9.4
7.2	Delegation 1	Gehlbach 5.1-5.4
8.1	Delegation 2	Gehlbach 5.5-5.7
8.2	Application (Problem set 3 due, March 7)	

Assessment

Applications and in-class quizzes	
Written assignment (due week 9)	
Problem sets (due weeks 3, 6, and 8)	
Final exam (take-home, due week 0 of TT)	

Background

This course will be harder if you've never seen notation like:

$$L=(p_1,\ldots,p_n)$$

$$U(L) \equiv \sum_{i=1}^{n} p_i u(x_i)$$

$$u(x) = x^2 \tag{1}$$

$$u'(x) = 2x \tag{2}$$

$$u'(x) = 2x \tag{2}$$

For catch-up/review, see Moore & Siegel's A Mathematics Course for Political & Social Research (2013) chapters 1, 2, 3, 5, 6, and 8.

Expectations

- ► You:
 - ▶ Do the reading for each session (at least attempt it).
 - ► If confused by reading, visit office hours (Tues, Thurs 11-12:30, Nuffield K4) and/or pose questions on Slack
 - ▶ If confused by what happens in class, stop me and/or do above
- I:
- respond to your questions in office hours and on Slack
- design quizzes, activities, mini-lectures, discussions, problem sets that reward your efforts in class and outside of class

Other business

- ▶ Need to reschedule meeting on 24th 2-4pm on 25th okay?
- ▶ Piazza for questions, lecture notes, announcements

Preferences, rationality, utility, expected utility

Preferences

Define set of outcomes $X = \{a, b, c\}$.

- ▶ a at least as good as b: $a \geq b$.
- ightharpoonup a better than b: a > b.
- ▶ a no better or worse than b: $a \sim b$.

Preferences

Define set of outcomes $X = \{a, b, c\}$.

- ▶ a at least as good as b: a > b.
- ▶ a better than b: a > b.
- ightharpoonup a no better or worse than b: $a \sim b$.

If preferences are **complete**, $a \geq b$ or $b \geq a$ (or both) for any pair of alternatives a and b.

If preferences are **transitive**, $a \succcurlyeq b$ and $b \succcurlyeq c$ implies $a \succcurlyeq c$.

Rationality

If behavior is consistent with complete and transitive preferences, it is often called **rational**.

The theory of rational choice ... is that a decision-maker chooses the best action according to her preferences, among all the actions available to her. No qualitative restriction is placed on the decision-maker's preferences; her rationality lies in the consistency of her decisions when faced with different sets of available actions, not in the nature of her likes and dislikes. (Osborne 2004, p. 4)

Quick detour: if and only if, \iff , necessary and sufficient

Identical statements:

- ► Condition A is true if and only if Condition B is true
- ▶ Condition A ⇔ Condition B
- A is a necessary and sufficient condition for B
- A is true whenever B is true and vice versa

Ordinal utility

Consider representing an agent's preferences over X by assigning a score to each outcome.

Ordinal utility

Consider representing an agent's preferences over X by assigning a score to each outcome.

Definition 2.2 (Kydd) A function $u: X \to \mathbb{R}$ is a utility function representing the preferences \succeq if (and only if), for all $x_i, x_j \in X$, $u(x_i) \ge u(x_i) \iff x_i \succcurlyeq x_j$.

Ordinal utility

Consider representing an agent's preferences over X by assigning a score to each outcome.

Definition 2.2 (Kydd) A function $u: X \to \mathbb{R}$ is a utility function representing the preferences \succeq if (and only if), for all $x_i, x_j \in X$, $u(x_i) \ge u(x_j) \iff x_i \succeq x_j$.

- Can a utility function be found for any set of preferences?
- Find a utility function for these preferences: a > b, b ~ c, c > d

Choice under uncertainty

Sometimes we are not choosing among outcomes $\{a,b,c\}$, but rather among actions $\{1,2,3\}$ that probabilistically lead to one of those outcomes

Examples: Voting, choosing a platform, challenging another state.

Each action leads to a *lottery* over alternatives.

Definition 2.3 (Kydd) A lottery associated with a finite set of outcomes, X, with number of elements equal to |X| = n, is a vector $L = (p_1, \ldots, p_n)$, where $p_i \in [0, 1]$ is interpreted as the probability that outcome i occurs, so that $\sum_i p_i = 1$.

Expected utility

The expected utility of a lottery is the *probability-weighted average utility* of the outcomes.

Expected utility

The expected utility of a lottery is the *probability-weighted average utility* of the outcomes.

Definition 2.4 (Kydd) The expected utility of a lottery L based on finite outcome set X is defined as the expected value of the utilities of the outcomes

$$EU(L) \equiv \sum_{i=1}^{n} p_i u(x_i)$$

Expected utility

The expected utility of a lottery is the *probability-weighted average utility* of the outcomes.

Definition 2.4 (Kydd) The expected utility of a lottery L based on finite outcome set X is defined as the expected value of the utilities of the outcomes

$$EU(L) \equiv \sum_{i=1}^{n} p_i u(x_i)$$

What is the expected utility of $L = \{.2, .3, .5\}$, given $u(x) = \{3, 2, 1\}$?

Suppose a set of lotteries \mathcal{L} . Agents can have preferences over these lotteries: e.g. $L_1 \succ L_2$.

Suppose a set of lotteries \mathcal{L} . Agents can have preferences over these lotteries: e.g. $L_1 \succ L_2$.

If these preferences are complete and transitive, we can find a utility function $v:\mathcal{L}\to\mathbb{R}$ to represent those preferences.

Suppose a set of lotteries \mathcal{L} . Agents can have preferences over these lotteries: e.g. $L_1 \succ L_2$.

If these preferences are complete and transitive, we can find a utility function $v:\mathcal{L}\to\mathbb{R}$ to represent those preferences.

Wouldn't it be great if there were a utility function over **outcomes** such that preferences over **lotteries** were given by the associated **expected utilities**?

Suppose a set of lotteries \mathcal{L} . Agents can have preferences over these lotteries: e.g. $L_1 \succ L_2$.

If these preferences are complete and transitive, we can find a utility function $v:\mathcal{L}\to\mathbb{R}$ to represent those preferences.

Wouldn't it be great if there were a utility function over **outcomes** such that preferences over **lotteries** were given by the associated **expected utilities**?

i.e. $EU(L_1) \geq EU(L_2) \iff L_1 \succcurlyeq L_2 \text{ for all } L_1, L_2 \in \mathcal{L}.$

Suppose a set of lotteries \mathcal{L} . Agents can have preferences over these lotteries: e.g. $L_1 \succ L_2$.

If these preferences are complete and transitive, we can find a utility function $v:\mathcal{L}\to\mathbb{R}$ to represent those preferences.

Wouldn't it be great if there were a utility function over **outcomes** such that preferences over **lotteries** were given by the associated **expected utilities**?

i.e.
$$EU(L_1) \geq EU(L_2) \iff L_1 \succcurlyeq L_2 \text{ for all } L_1, L_2 \in \mathcal{L}.$$

This can't be true for all imaginable preferences.

Suppose a set of lotteries \mathcal{L} . Agents can have preferences over these lotteries: e.g. $L_1 \succ L_2$.

If these preferences are complete and transitive, we can find a utility function $v:\mathcal{L}\to\mathbb{R}$ to represent those preferences.

Wouldn't it be great if there were a utility function over **outcomes** such that preferences over **lotteries** were given by the associated **expected utilities**?

i.e.
$$EU(L_1) \geq EU(L_2) \iff L_1 \succcurlyeq L_2 \text{ for all } L_1, L_2 \in \mathcal{L}.$$

This can't be true for all imaginable preferences.

But John von Neumann and Oscar Morgenstern (1947) proved that there is such a utility function if and only if preferences over lotteries are complete, transitive, continuous, and independent (**Theorem 2.2 in Kydd**).

Cardinal utilities, i.e. von Neumann Morgenstern (VNM) utilities

Morgenstern and Von Neumann, 1946

To show: if u(x) is a VNM (cardinal) utility function (i.e. expected utility of lotteries tracks preferences over lotteries), then so is a + bu(x), where b > 0.

What does this mean about cardinal utilities, in plain English?

Proof

To show: if u(x) is a VNM (cardinal) utility function, then so is a + bu(x), where b > 0.

Proof Call the expected utility of a lottery L under the original utility function U(L), and call the expected utility a lottery L under the transformed utility function V(L). We need to show that $U(L) \geq U(L') \iff V(L) \geq V(L')$ for all L, L'.

First we show V(L)=a+bU(L). Recall $U(L)\equiv\sum_{i=1}^n p_i u(x_i)$. Observe that

$$V(L) \equiv \sum_{i=1}^{n} \rho_i (a + bu(x_i))$$
 (3)

$$= a \sum_{i=1}^{n} p_i + b \sum_{i=1}^{n} p_i u(x_i)$$
 (4)

$$= a + bU(L). (5)$$

Now, suppose that $U(L) \geq U(L')$ for some L, L'. Then $bU(L) \geq bU(L')$, assuming b > 0. And $a + bU(L) \geq a + bU(L')$ for any a. This implies that $U(L) \geq U(L') \iff V(L) \geq V(L')$. QED.

Cardinal utilities: relative values matter, but not scale or location

With cardinal utilities,

- ▶ the relative values matter: if $\{3, 2, 1\}$ works as cardinal utility, $\{3, 2, -1000\}$ does not.
- ▶ the scale does not matter: if $\{3,2,1\}$ works as cardinal utility, $\{300,200,100\}$ and $\{5,4,3\}$ and $\{2,1,0\}$ do too.

Cardinal utilities: relative values matter, but not scale or location

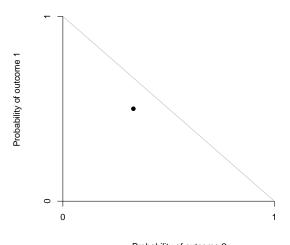
With cardinal utilities,

- ▶ the relative values matter: if $\{3, 2, 1\}$ works as cardinal utility, $\{3, 2, -1000\}$ does not.
- ▶ the scale does not matter: if $\{3,2,1\}$ works as cardinal utility, $\{300,200,100\}$ and $\{5,4,3\}$ and $\{2,1,0\}$ do too.

So we can e.g. **normalize** to 0-1 scale.

Suppose there are only three outcomes.

Lotteries can be depicted as points on the **simplex**:



Definition: Preferences over lotteries are *independent* if

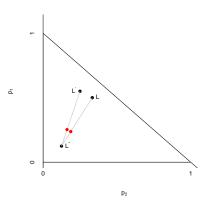
$$L \succcurlyeq L^{'} \iff \alpha L + (1 - \alpha)L^{''} \succcurlyeq \alpha L^{'} + (1 - \alpha)L^{''}$$

Kydd p. 15: "If $L_1 > L_2$, then adding an equal chance of obtaining L_3 to both sides does not alter the preference."

By definition, if preferences over lotteries are independent, then

$$L \sim L^{'} \iff \alpha L + (1 - \alpha)L^{''} \sim \alpha L^{'} + (1 - \alpha)L^{''}$$

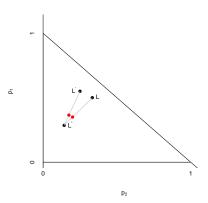
Then also indifferent between lotteries at the red points below.



By definition, if preferences over lotteries are independent, then

$$L \sim L^{'} \iff \alpha L + (1 - \alpha)L^{''} \sim \alpha L^{'} + (1 - \alpha)L^{''}$$

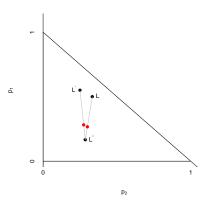
Also indifferent between lotteries at the red points below.



By definition, if preferences over lotteries are independent, then

$$L \sim L^{'} \iff \alpha L + (1 - \alpha)L^{''} \sim \alpha L^{'} + (1 - \alpha)L^{''}$$

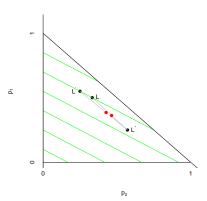
Also indifferent between lotteries at the red points below.



By definition, if preferences over lotteries are independent, then

$$L \sim L' \iff \alpha L + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L''$$

Then **indifference curves** are lines parallel to the line connecting L and L':



Normalize utilities such that $u_1 = 1$ and $u_3 = 0$.

Normalize utilities such that $u_1 = 1$ and $u_3 = 0$.

Then
$$EU(L) = p_1 + p_2 u_2$$
.

Normalize utilities such that $u_1 = 1$ and $u_3 = 0$.

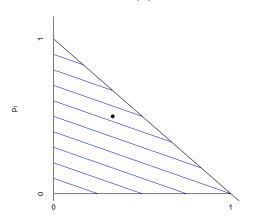
Then
$$EU(L) = p_1 + p_2 u_2$$
.

Rearranging, $p_1 = EU(L) - p_2u_2$.

Normalize utilities such that $u_1 = 1$ and $u_3 = 0$.

Then
$$EU(L) = p_1 + p_2 u_2$$
.

Rearranging, $p_1 = EU(L) - p_2u_2$. We can thus plot a line connecting lotteries that have the same **expected utility** (an **isoquant**) for various values of U(L):



What have we shown?

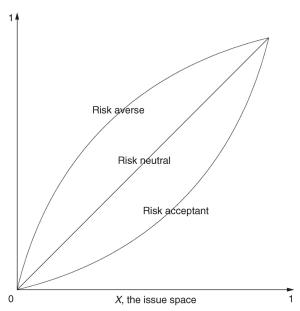
- ▶ If preferences are independent, **indifference curves** are parallel lines on the simplex
- ▶ **Isoquants of expected utility** are also parallel lines on the simplex; lines' slope depends on u_2
- So if preferences are independent then u_2 can be chosen so that indifference curves and isoquants of expected utility are **the same**, i.e. so that expected utility tracks preferences over lotteries.

What have we shown?

- ▶ If preferences are independent, **indifference curves** are parallel lines on the simplex
- ▶ **Isoquants of expected utility** are also parallel lines on the simplex; lines' slope depends on *u*₂
- So if preferences are independent then u_2 can be chosen so that indifference curves and isoquants of expected utility are **the same**, i.e. so that expected utility tracks preferences over lotteries.

Google "Jonathan Levin choice under uncertainty" for more rigorous version.

Risk preferences



Other topics

- Formalizing strategic voting
- ► Two-dimensional preferences and bargaining