Formal Analysis: Electoral competition under uncertainty

Andy Eggers

Week 3 Session 1

[Distributional politics](#page-2-0)

Distributional politics without uncertainty

Setup

- \triangleright Two groups in society, 1 and 2; share $\alpha > 1/2$ of voters are in group 1.
- \blacktriangleright Two parties A and B compete by proposing per-voter net transfers t_1 and t_2 (t_{1A} , t_{2A} and t_{1B} , t_{2B})
- **Party proposals must balance the budget:** $\alpha t_1 + (1 \alpha)t_2 = 0$
- \blacktriangleright All voters in a group vote for the party offering them more, e.g. voters in 1 vote A if $t_{1A} > t_{1B}$; if tie, split evenly

What is the Nash equilibrium of this game?

Distributional politics with "uncertainty"

Setup: same as before, except

- \triangleright Two groups in society, 1 and 2; share α of voters are in group 1.
- \triangleright Two parties A and B compete by proposing per-voter net transfers t_1 and t_2 (t_{1A} , t_{2A} and t_{1A} , t_{2A})
- **Party proposals must balance the budget:** $\alpha t_1 + (1 \alpha)t_2 = 0$
- \triangleright Voter *i* in group g votes for party A if

$$
v(y_g + t_{gA}) > v(y_g + t_{gB}) + \eta_i,
$$

where v is a monotonically increasing and concave function and η_i distributed uniformly on $\Big[-\frac{1}{2}\Big]$ $\frac{1}{2}$, $\frac{1}{2}$ 2 1

See handout.

[Divergence in the Wittman model](#page-5-0)

Divergence: one reason to consider uncertainty

Hotelling-Downs predicts platform convergence, but generally parties are not identical (nor would voters bother to vote if they were).

What is missing from the model?

Grofman (2004) "Downs and Two-Party Convergence" shows **17** ways to relax one assumption in Hotelling-Downs and produce divergence.

Recent work allows us to turn what is taken to be the Downsian view on its head: Although there are pressures in two-party competition for the two parties to converge, in general we should expect nonconvergence. (Grofman 2004)

Tools for explaining divergence without uncertainty

In Chapter 1 we already saw some ways to explain divergence without uncertainty, and you can probably think of others. **Name some.**

Tools for explaining divergence without uncertainty

In Chapter 1 we already saw some ways to explain divergence without uncertainty, and you can probably think of others. **Name some.**

- \triangleright Multiple parties competing: e.g. equilibrium with two parties on each side of the median
- \triangleright Citizen-candidate model: equilibria with divergent candidates competing, in which
	- \triangleright Centrist would win but doesn't want to enter
	- \triangleright Centrist would lose because of strategic voting

Wittman model with uncertainty

Setup:

- \triangleright Parties L and R have Euclidean policy preferences, with ideal points at 0 and 1 respectively
- \triangleright Position of median voter x_m uncertain; distributed uniformly on $[\mu - a, \mu + a]$

Party L chooses policy x_l to maximize

$$
\pi(x_L, x_R)(-|x_L|) + [1 - \pi(x_L, x_R)](-|x_R|)
$$

If $0 < x_I < x_R < 1$, then we can drop absolute values and this simplifies to

$$
-x_R + \pi(x_L,x_R)(x_R-x_L).
$$

Could proceed with $\pi(x_L, x_R)$, but given assumptions we can unpack it and find optimal x_l .

Wittman model with uncertainty (2)

The voter who is indifferent between L and R is located at $\frac{x_L+x_R}{2}$. So what is the probability of L winning, given x_I and x_R ?

Wittman model with uncertainty (3)

The height of a uniform density of length 2a must be 1*/*2a.

So:

$$
\pi(x_L, x_R) = \frac{1}{2a} \left[\frac{x_L + x_R}{2} - (\mu - a) \right]
$$

$$
= \frac{x_L + x_R}{4a} - \frac{\mu}{2a} + \frac{1}{2}
$$

Wittman model with uncertainty (4)

Then L's problem becomes

$$
\max_{x_L} \left(\frac{x_L + x_R}{4a} - \frac{\mu}{2a} + \frac{1}{2} \right) (x_R - x_L)
$$

yielding solutions of

$$
x_L^* = \mu - a
$$

and

$$
x_R^* = \mu + a.
$$

- \triangleright Does this make sense?
- \triangleright What changes to the model would lead to more or less divergence?

["Excessive electoral manipulation" in the](#page-13-0) [Simpser model](#page-13-0)

Simpser's puzzle of "excessive electoral manipulation"

Electoral manipulation "is frequently perpetrated far beyond the victory threshold and in excess of any plausible safety margin" (Simpser 2012, pg. 1)

Why? Several answers, including incumbent's desire to send a signal of strength.

Model in 2.5 focuses on coordination problem in opposition: incumbent punishes opposition supporters if he wins, which leads to low opposition turnout when opposition victory seems unlikely.

Modeling Simpser's theory

Citizens all receive benefit d *<* 1 from voting, but they vary in the cost of voting, with c_i uniformly distributed on [0, 1].

Share α _O support opposition, share α _I support incumbent, with α _O $>$ α _I. If incumbent wins, he imposes cost s on opposition supporters who voted.

Then opposition supporter should vote if

$$
d-c_i-\pi(\sigma)s>0,
$$

where $\pi(\sigma)$ denotes the probability of incumbent victory, given profile of voting strategies *σ*.

Modeling Simpser's theory (2)

Rearranging, opposition supporters who vote are those with

$$
c_i < d-\pi(\sigma)s,
$$

meaning that the opposition's *turnout rate* is $d - \pi(\sigma)s$.

The more likely the incumbent is to win, the fewer opposition supporters turn out.

Modeling Simpser's theory (3)

Two equilibria:

- **Opposition victory** Suppose $\pi(\sigma) = 0$ (incumbent sure to lose). Then every opposition member with $c_i < d$ votes, in which case $\pi(\sigma)=0$, because we assumed $\alpha_{\mathcal{O}}>\alpha_{\mathcal{V}}.$
- **Incumbent victory** Suppose $\pi(\sigma) = 1$ (incumbent sure to win). Then only opposition members with $c_i < d - s$ vote. If $(d - s)\alpha_O < d\alpha_I$, then $\pi(\sigma) = 1$.

When we see "excessive electoral manipulation", it may be because we are in the second equilibrium. Was it really "excessive"?