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Motivation

If treatment is randomized, the difference in group means (DIGM) (naive

estimator) is an unbiased estimator of the average treatment effect
(ATE):
E[DIGM] = E[Y4|D; = 1] - E[YqilD; = 0] (definition)
= E[Yii] — E[Yoi] (randomization)
= ATE (definition)
But more generally (e.g. in observational study),
E[DIGM] = ATT + selection bias

This is why, instead of just calculating DIGM, we control for covariates
using e.g. regression.

DIGM is also known as the naive estimator. Let’s not be so naive!
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Plan

» Introduction to covariate adjustment and the key assumption behind
it: the conditional independence assumption (CIA)

» With running example of “MPs for Sale?” (2009), illustration using
three methods of covariate adjustment:

» sub-classification
> matching
> regression

Ultimately use regression, but understand others.

3/61



Introduction to covariate adjustment

Setup

You are given a very large (population-level) dataset with three columns,
labeled Y;, D;, and X;, and asked to assess the effect of D; on Y;.

You calculate DIGM: E[Yy|D; = 1] — E[Y0ilD; = 0] = 1.5 -0.75 = 0.75.

But using table() and prop.table() in R you observe that D; is related
to X;:

Joint distribution of X; and D; in the dataset
| D=0 D=1
Xi=0 3/8 1/8
Xi=1 1/8 3/8

To discuss: Think of an example where D; and X; might be related in this
way. What does Y represent in your example?
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Introduction to covariate adjustment

Outcomes by X and D

You calculate the mean outcomes by X; and D;:

| D=0 D=1
Xi=0] 0 0
Xi=1| 3 2

So, what is the effect of D; on Y;?
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Introduction to covariate adjustment

Conditional independence assumption (CIA)

Note: Cannot proceed without assumptions.

One possible assumption: treatment “as-if random” within levels of X;.
Equivalent (but more technical) assumptions:
» potential outcomes independent of D; given X;: Yo;, Y1; L Di|X;
» no selection bias conditional on X;:
E[Yo,‘|Di = 1,X,‘ = X] = E[Y0;|D,' = O,X,' = X] VX e {0,1}

This is the conditional independence assumption (CIA), aka “selection
on observables”.

If CIA holds, DIGM gives us ATE within levels of X;.
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Introduction to covariate adjustment

CATE, ATE, ATT, ATC

ATE where X; = x is called Conditional Average Treatment Effect
(CATEy).

CATEy = E[Y1i — YoilXi = X]
Given CIA we have
\D,-:O D,-:1\CATEX
0 0 0 0
1 3 2 -1

Xi
Xi

(Thinking of examples, why would CATE vary with x?)

We summarize average effect of D; on Y; by calculating weighted
averages of CATE,s.

When CATE, weighted by distribution of X; in the
» population: ATE
» treatment group: ATT (ATE on the treated)
» control group: ATC (ATE on the control)
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Introduction to covariate adjustment

CATE, ATE, ATT, ATC in this example

Reminder: our CATE,s

| D=0 D =1 | CATE, | D=0 D=1
X =0 0 0 0 Xi=0 3/8 1/8
X =1 3 2 -1 Xi=1 1/8 3/8

Reminder: When CATE, weighted by distribution of X; in the

> population: ATE
> treatment group: ATT (ATE on the treated)
» control group: ATC (ATE on the control)

So what is ATE, ATT, ATC in this example (given CIA)?

Reminder: Joint distribution of X; and D;:
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Introduction to covariate adjustment

lllustration for this example
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Introduction to covariate adjustment

lllustration for this example (2)

o — E[Yo|D=0,X=1] a

ATE,
e  ATTe
8 ~ 4 (weight CATEs 1:3) N E[Y1i|Di=1,Xi=1]
5
(=}
ks ° o E[Y3]D=1]
3]
Q
o
g o« o ATE
E[YOiIDi:O] ® (weight CATEs 1:1)
e ATC
(weight CATEs 3:1)
CATE,
o - E[YuD=0X=0]w — w E[Yy|D=1,X=0]
1
0 1

Treatment status (D)

Check understanding:

> Why are ATE, ATT, ATC
all the same in a
randomized experiment?

» How can the DIGM be
positive when neither
CATE is positive?

11/61



Introduction to covariate adjustment

Mathier explanation

The ATT is the weighted average of the CATEs, where the weights reflect
the distribution of X; in the treatment group.

AT = > E[Yi()-Yi@Xi=x|Pr(Xi=xiDi=1) (1)
x=0,1

— Z CATE,Pr(X; = x|D; = 1) (2)
x=0,1

In this case, this is
ATT=0x1/4+-1x3/4 =-3/4.

The weights of 1/4 and 3/4 come from the joint distribution: the probability
of X; = 1 given that D; = 1 can be calculated as the ratio 572257, which is
a simple application of Bayes’ Theorem.
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Introduction to covariate adjustment

Does the CIA hold?

The CIA is an untestable assumption: it relies on “theory”, some indirect
evidence.

Two key ways it might fail in this example:

» There might be another variable Z; related to D; that affects Y;
(selection bias persists).

» X; might be an outcome, so controlling for it introduces

post-treatment bias. e.g. suppose D; had been randomly assigned —
how would we interpret this data?
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Introduction to covariate adjustment

What do we condition on/control for?

For the CIA to hold, we must control for every variable that
» is not an effect of D;
» affects D; and, conditional on other control variables, affects Y;.

(For guidance on what to control for, see Morgan & Winship and the
“backdoor criterion”.)

To discuss: In regressions, generally only one coefficient (at most) can be
interpreted as a (causal) effect. Why is that?
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Introduction to covariate adjustment

How do we condition/control?

We’ll discuss three approaches:
» Sub-classification

> put units into cells according to X;
» calculate CATE within cells and average

» Matching

» for each treated unit (or each control unit) (or each unit), find unit(s)
same/similar on X; with opposite D;
» calculate DIGM

» Regression
> estimate E[Y,] = Bo + B1D; + B2X;
For simple cases, basically identical.

Link to CIA more obvious for sub-classification and matching, but
regression more flexible and common.
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Introduction to covariate adjustment

Running example

Eggers and Hainmueller, “MPs for Sale” (2009)

Basic question: Was election to the UK House of Commons financially
rewarding?

» Units: Candidates who ran for parliament at some point between
1950 and 1970

» Treatment: Winning at least one election
» Outcome: Wealth at death (probate value)

What about the DIGM as an estimator for ATE?
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Covariates

Introduction to covariate adjustment

For each candidate, we have

> party

v

v

v

electoral results
year of birth
secondary education

» university education

» profession
How can we use these to make better

comparisons?

BETHNAL GREEN
Electorate : 42,172

*Haolman, P. {Co-op.& Lab) .. 20,519
Harris, Sir P (L.} .. S 7
Welfare, Mys, D). (C) 1,582
Mildwater, G. (Comm.) 38 610

Co-op. & Lab. majority 10,804

Mr. P. HoLmaw was
elected for S.W. Bethnal
Green in 1945,  Born
in 1891 and educafed at
Mill Hill and the London

chool of  Feonomics,
he has been # member
of Middlesex  County
Coungil and Teddington
UDiC. He was some-
tume . lecturer  for  the
Workers'  Educationa
Associaton. He wis a
member of the Parlia-
mentary. Lubour Party groups on finance and
industry.

S Perey Harius, whe s 73, first elecied 1o
Parliament for Harborough in [916-18, repre-
sented S.W. Bethnal Green from 1922 to 1945,
For 35 vears he has served on the L.C.C. and
after the 1949 elections was the only Libera
an the council. Educated at Harrow and af
Trinity Hall, Camhndgc he was called to the
Bar in 1899, He was Chief Whip.of the Parlia-
mentary Liberal Party from 1935 to 1945, and
deputy-lcader 1n thie war-lime Parliament, and
also chairman of the House of Commons All-
l’driv Panel, and treasuger of the Inter-
Pasliamentary Union.
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Covariate adjustment based on categorical variables

CIA based on categorical variables

Suppose we believe that CIA holds given candidate’s
» party (Labour, Conservative)

» type of secondary education (Eton, other public, other, not
mentioned), and

» type of university education (Oxbridge, other, not mentioned)

i.e. For pairs of candidates with the same party, school, and university, MP
status as-if randomly assigned — not related to potential outcomes.

Plausible?
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Covariate adjustment based on categorical variables

Number of candidates by party & education

Party: Con. Party: Lab.
University: Oxbridge Other None Oxbridge Other None
School: Eton 16 4 5 2 0 0
Other public 40 25 31 21 10 3
Other 10 25 31 19 49 31

Not mentioned 7 12 17 5 27 37
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Covariate adjustment based on categorical variables

Number of MPs and unsuccessful candidates by cell

Note: (2,1) indicates 2 elected candidates and 1 unelected candidate

Party: Con. Party: Lab.
University: Oxbridge  Other None Oxbridge  Other None
School: Eton (14, 2) (3, 1) (4, 1) (0,2) (0, 0) (0, 0)

Other public ~ (18,22)  (11,14) (11,20) (6, 15) (4, 6) (1,2
Other (2, 8) (8,17) (10, 21) (2,17) (15,34) (13,18)
Not mentioned (4, 3) (7, 5) (12, 5) (1,4) (8,19) (11, 26)
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Covariate adjustment based on categorical variables

Difference in group means (of log wealth at death) by cell

Party: Con. Party: Lab.
University: Oxbridge Other None Oxbridge Other None
School: Eton 2.61 266 -0.67 - - -
Other public 0.35 0.15 0.48 0.65 -0.27 0.58
Other 1.05 0.33 0.51 -0.02 -0.01  0.45
Not mentioned 0.06 148 0.25 -0.6 0.27 0.06
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Covariate adjustment based on categorical variables

Sub-classification

Sub-classification: calculate DIGMs in each cell; average them.

Party: Con. Party: Lab.
University: Oxbridge Other None Oxbridge Other None
School: Eton 2.61 2.66 -0.67 - - -
Other public 0.35 0.15 048 0.65 -0.27 0.58
Other 1.05 0.33 0.51 -0.02 -0.01  0.45
Not mentioned 0.06 148 0.25 -0.6 0.27 0.06
Average DIGM across cells
weighting by #candidates in each cell: .40 (ATE)
weighting by #MPs in each cell: 54 (ATT)
weighting by #non-MPs in each cell: .31 (ATC)
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Covariate adjustment based on categorical variables

Matching

Matching: fill in missing potential outcomes using “nearest neighbor” with

opposite treatment status. (e.g. for Tory MP born in 1928 who went to
Oxford, use Tory non-MP born in 1927 who went to Cambridge)

Exact matching: fill in missing potential outcomes using average of exact

matches with opposite treatment status.

For example:

Party School University Treated  In(Wealth) Yoi Yii
Labour  Other Public  Not Mentioned 1 12.7 ?12.15 127
Labour Other Public Not Mentioned 0 11.8 11.8 ?12.7
Labour Other Public Not Mentioned 0 12.5 12.5 2112.7

To get ATE: take difference in mean of Yj; and Yy; (with imputations).
To get ATT: same, but only using treated rows.
To get ATC: same, but only using control rows.
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Covariate adjustment based on categorical variables

Exact matching: implementation

Using Matching library:
> match.ate = Match(Y = d$1lnrealgross, Tr = d$treated, X = d[,c("tory"

, "uni.cat", "sch.cat")], exact = T, estimand = "ATE")
> round(match.ate$est, 2)

[,1]
(1,1 0.4

> round(Match(Y = d$lnrealgross, Tr = d$treated, X = d[,c("tory", "uni
.cat"”, "sch.cat")], exact = T, estimand = "ATT")$est, 2)

[,1]
[1,] ©.54
> round(Match(Y = d$lnrealgross, Tr = d$treated, X = d[,c("tory", "uni
.cat", "sch.cat")], exact = T, estimand = "ATC")$est, 2)

[,1]
[1,] @2.31
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Covariate adjustment based on categorical variables

Regression
Given CIA, regression implies regressing Y; on an indicator for treatment
and a dummy for every cell.

> summary(lm(lnrealgross ~ treated + cell.cat, data = d))

Call:
Im(formula = lnrealgross ~ treated + cell.cat, data = d)

Residuals:
Min 1Q Median 3Q Max
-4.8977 -0.4868 -0.0022 ©.4877 3.7358

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 13.0120 0.7079 18.3B2 < 2e-16 ***
treated 0.3710 @.1057 3.510 ©.00@499 **+
cell.cat2 -9.73% 0.7274 -1.017 ©.309864
cell.cat3 -0.9216 @.7343 -1.255 0.210151
cell.cat4 -0.1767 @.8378 -@.211 @.833110
cell.cat5s -0.8024 ®.9145 -0.877 0.380777
Fall rath A 511@ m 7766 -G RRR O S1AO17
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Covariate adjustment based on categorical variables

Regression (2)
Equivalent: regressing Y; on each of the categorical variables and their
interactions:

> summary(lm(lnrealgross ~ treated + party*scat*®*ucat, data = d))

Call:
Im(formula = lnrealgross ~ treated + party * scat * ucat, data = d)

Residuals:
Min 10 Median 3Q Max
-4.8977 -0.4868 -0.0022 ©.4877 3.7358

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t wvalue Pr(z1tl)

(Intercept) 13.@4495 ©.99891 13.165 < Ze-16 ***
treated 9.37101 @.1857@ 3.510 ©.000499 ***
partytory 9.66122 @.88687 ©.746 ©.456362
scatnotMentioned -0.77257 1.80459 -0.769 0.442319
scatotherPublic -9.83536 1.14731 -0.728 ©.466969
scatsecondary -1.10119 ©.97491 -1.13@ @.259342
ucatotherDegree -@.53300 @.75924 -0.702 0.483069
ucatoxbridge -0.083294 @.69342 -0.047 ©.962139
partytory:scatnotMentioned -0.24588 ©.93177 -0.264 @.791999
partytory:scatotherPublic -0.40490 1.87359 -0.377 0.706263
nartutary: cratee condary D 15465 2 @ REPST - 187 [ QEER1E 27/61



Covariate adjustment based on categorical variables

Saturated regression models

This is a saturated model, i.e. one with a dummy for each possible
combination of the explanatory variables:

» all “main effects” (Labour, Eton, ...), and
» all interactions (Labour x Eton, Labour x OtherPublic, ...)).

Given categorical variables, a saturated model is the most flexible possible
functional form.

To discuss: Why would you prefer a saturated model to a model with only
main effects, no interactions?
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Covariate adjustment based on categorical variables

Comparison of techniques

Comparison of estimates
\ ATE ATT ATC
Sub-classification | .40 .54 .31
Matching (exact) | .40 .54 .31
Regression | .37 - -

To note:
» ATE from sub-classification is average of cell DIGMs weighted by
{ } (definition).

» ATE from (exact) matching is exactly the same thing.

» ATE from saturated regression is the average of cell DIGMs weighted
by { X } (Angrist and Pischke

MHE p. 75).
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Covariate adjustment using the propensity score

CIA based on further categorical variables

Perhaps we don’t quite believe the CIA based only on party, secondary
education, and university education.

The candidate’s profession before entering politics is another likely
confounder.

But here we run into a problem of sparse data (curse of dimensionality):

» Sub-classification: many empty cells
» Matching: few exact matches
» (Saturated) regression: many empty groups, NA coefficients

You may get an estimate, but it will be based on an unrepresentative
subset (far from true ATE).
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Covariate adjustment using the propensity score

How to proceed when many cells are empty

What can we do?
» Sub-classification: propensity score methods

» Matching: propensity score methods, nearest neighbor, coarsened
exact matching

» Regression: propensity score methods, stronger CIA (i.e. less flexible
functional form, e.g. drop interactions)
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Covariate adjustment using the propensity score

Propensity score methods
The propensity score is the probability of treatment, given covariates:

p(X,-) = PI‘(D,‘ = 1|X,) = E[D,'|X,‘]
This can be estimated with OLS (linear probability model) or logistic
regression (logit).

Ideally, the propensity score summarizes covariates that differ between
treated and untreated units.

The CIA becomes: Yy, Y1i 1L Di| p(Xi)

Having estimated the propensity score, we can

» Sub-classification: calculate DIGM within bands of the propensity
score

» Matching: match units based on nearby propensity scores

» Regression: regress outcome on treatment controlling flexibly for the
propensity score
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Covariate adjustment using the propensity score

Propensity score example

| regress the treatment indicator on party, secondary school category,
university category, year of birth (yob), yob?, yob®, gender, 11 profession
indicators.

ps.model = lm(treated ~ labour + scat + ucat + xxyob + I(xxyob”2) + I(xxyob”3) + xxfemale + xxoc_teacherall
+ xxoc_barrister + xxoc_solicitor + xxoc_dr + xxoc_civil_serv + xxoc_local_politics + xxoc_business +
xxoc_white_collar + xxoc_union_org + xxoc_journalist + xxoc_miner, data = d, na.action = na.exclude) # na
.exclude so that an NA is included in predictions for units with missing values

Take a look at the results:
> summary(ps.model)$coefficients
Estimate Std. Error t value Pr(=1tl)

(Intercept) 2.640142e+04 9.015006e+04 ©.2928608 0.7637793131
labour -1.535037e-01 5.526546e-02 -2.7775703 0.0057325165

scatnotMentioned -3.821275e-01
scatotherPublic -3.154628e-01
scatsecondary -3.86457%-01
ucatotherDegree .350661e-02

.132277e-01 -2.6683185 ©.0079308561
.03694%e-01 -3.0422208 0.0025020298
.072719%e-01 -3.6026008 0.0003544281
.849440e-02 ©@.5728174 0.5670878012

w

ucatoxbridge -4.119867e-02 6.544398e-02 -0.6295257 0.5293616454
I(xxyobA2) 2.213470e-02 7.352562e-02 0.3010475 0.7635335588
I(xxyobA3) -3.899376e-06 1.277858e-05 -0.3051494 0.7604098834
xxfemale -9.486131e-02 1.173128e-01 -0.8086184 ©.4192117588
xxoc_teacherall -6.575377e-02 8.060895e-02 -0.8157131 0.4151461145
xxoc_barrister -7.703770e-02 8.274819%-02 -0.9309896 ©.3524163260
xxoc_solicitor -6.257366e-02 9.595262e-02 -0.6521308 ©.5146885466

.551896e-01 -0.2135566 @.8310008086

9
5
1
1
1
5
6
xxyob -4.187426e+01 1.410154e+02 -0.2969482 0.7666590682
7
1
1
8
8
9
1

xxoc_dr -3.314176e-02

34/61



Covariate adjustment using the propensity score

Propensity score example (2)

The propensity score is the prediction from this model:
pX = p}“eaict(ps.mndel)

Compare the distribution by treatment status:

plot(density(pX[détreated == @], na.rm = T), lwd = 2, col = "red", main = "Propensity score by treatment
status", xlab = "Probability of being an MP")

lines(density(pX[dStreated == 1], na.rm = T), lwd = 2, col = "blue")

legend("topleft”, lwd = c(2,2), col = c¢("red”, "blue"), legend = c("non-MP", "MP"))

Propensity score by treatment status

3.0

25

Density
15 20

1.0

0.5

0.0

Probability of being an MP 35/61



Covariate adjustment using the propensity score

Sub-classification on the propensity score

Let's start with 10 sub-classes of the propensity score:

libra r'—yCd plyr)

d$pX.tile = ntile(pX, 1@)

Counts and DIGMs in each sub-class:

Subclass  #units #MPs #non-MPs DIGM
1 43 4 39 -0.24
2 43 13 30 0.01
3 43 13 30 0.9
4 42 12 30 0.33
5 43 18 25 0.24
6 43 15 28 -0.13
7 42 15 27 0.35
8 43 20 23 0.5
9 43 26 17 0.47
10 40 29 11 1.69

How many sub-classes? Bias-variance tradeoff.

ATE: 0.40
ATT: 0.57
ATC:0.30
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Covariate adjustment using the propensity score

Nearest-neighbor matching on the propensity score

Using defaults in Matching:

use = !is.na(pX) # Match requires no missing data.

match.ate = Match(Y = d$lnrealgross[use], Tr = dStreated[use],
X = pX[use], estimand = "ATE")

match.att = Match(Y = d$lnrealgross[use], Tr = d$treated[use],
X = pX[use], estimand = "ATT")

match.atc = Match(Y = d$lnrealgross[use], Tr = d$treated[use],
X = pX[use], estimand = "ATC")

ATE: 0.42
ATT: 0.50
ATC: 0.38
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Covariate adjustment using the propensity score

Balance statistics for matching

Age at first race
Miner
Journalist
Trade union
White collar
Business
Local politician
Doctor
Solicitor
Barrister
Teacher
‘Grammar school
Eton
Public school
Born after 1920 o
Born 1900-1920 o
Born before 1900
Female
Died 2000-2005
Died 1995-1999
Died 1990-1994
Died 1984-1989
Oxbridge
Other university
Technical university
University not coded

ll
o e
o e
o e
‘e o
., e
® ®
5 cC
1 [ ] o]
b
o ,e
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-0.2 0.0 0.2

0.4
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Covariate adjustment using the propensity score

Regression controlling for the propensity score

Controlling via dummies for 10 sub-classes:

d$pX.tile = ntile(pX, 10)
summary(lm(lnrealgross ~ treated + as.factor(pX.tile), data = d))3$coefficients

(Intercept)
treated

as.
as.

as

as.
as.
as.
as.

as

as.

factor(pX.
factor(pX.
.factor(pX.
factor(pX.
factor(pX.
factor(pX.
factor(pX.
.factor(pX.
factor(pX.

tiled2
tile)3
tile)4
tile)s
tilede
tile)?
tile)8
tiled9
tile)10

12

[~

[

%]
%]
-0.
Q.
Q.

Estimate Std. Error

.31@737706
430298252
.138439205
.111779595
.065073825
.127734431
.158400433
.020971809

0933937183
227911766
597870989

Q.
0.1103101
0.2258278
0.2258278
@.2269751
@.2274973
Q.
[}
[}
[}
[}

1591787

2264099

.2278481
.2283635
.2316254
.2392019

77

3
4]
4]
4]
4]
]
]
]
4]
4

t value

.33909546
.90080605
61302995
49497712
.28670023
.56147673
69961800
09204294
.01724086
.98396686
49944111

Pri>1tl)

3.258338e-248

P WY w s U N U

.118504e-04
.401932e-01
.208789%e-01
.744853e-01
.747764e-01
.845588e-01
.267084e-01
.862528e-01
.257065e-01
.282519%e-02
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Covariate adjustment using the propensity score

Regression controlling for the propensity score (2)

Controlling via polynomials of propensity score:

> summary(lm(lnrealgross ~ treated + pX + I(pXA2) + I(pXA3)
Std. Error

(Intercept) 12
treated ]
pX -@
I(pXA2) 7
I(pXA3) -21

I(pXA4) 18

Estimate

.3800460
.4051929
. 7290546
. 7034958
.8374543
. 8390905

Q.
Q.
4.
17.
31.
18.

3572190
1075289
8672344
7541367
1168400
2084632

t value Pr(>1tl)

.6567382 4.079552e-125
.7682222 1.879786e-04
.1792507 8.578275e-0@1
.4338986 6.645854e-01
.7017889 4.832004e-01
.0346337 3.014368e-01

+ I(pXA4), data

d))$coefficients

40/61



Covariate adjustment using the propensity score

Comparison of techniques (propensity score version)

Comparison of estimates

| ATE ATT ATC

Sub-classification
Matching

Regression: bins
Regression: polynomials

To note:

40 57 .30
42 50 .38
41 - -
43 - -

» Propensity score is estimated, which should be considered in

variance

» Our model for the propensity score has no interactions — stronger

assumptions than previous exercise
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Covariate adjustment in sparse data without the propensity score

Sub-classification without the propensity score

To avoid empty cells, you might try playing around with how cells are
defined.

This is basically how I think about coarsened exact matching (CEM) by
King et al.
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Covariate adjustment in sparse data without the propensity score

Nearest-neighbor matching with the covariates

We can do nearest-neighbor matching with the covariates themselves, rather than
propensity score.

But which units are “near” each other?

e.g. Should | match a Tory born in 1928 who went to Oxford to a
» Tory born in 1927 with no university listed?
> Labour candidate born in 1928 who went to the LSE?
» Tory bornin 1942 who went to Oxford?

Some of the options:

» scale distance on each variable by inverse of the variable’s sample variance (default
in Matching when not exact)

» scale distance by the inverse of the covariance matrix (Mahalanobis distance)

» genetic matching: search for a weight matrix that yields overall covariate balance
(Diamond and Sekhon)
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Covariate adjustment in sparse data without the propensity score

Regression

Adding control variables to a regression model is very straightforward.

With sparser data, can no longer use saturated models; rely more on
linearity, additivity (as with the estimation of the propensity score).

These two approaches should give you very similar results:

1. Estimate propensity score p(X;) based on model:
Di = ag + a1 Xit + a2Xip + ... + ax Xik

Regress Y; on D; and a flexible function of the propensity score.

2. Regress Y; on D; and covariates Xj; to Xik.
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Covariate adjustment in sparse data without the propensity score

Regression: propensity score vs. covariates

In the “MPs for Sale” example:

Approach ATE
Regress Y; on D; and 10 bins of propensity score 43
Regress Y; on D; and 4 polynomials of propensity score 41

Regress Y; on D; and covariates from propensity score model .41
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Covariate adjustment in sparse data without the propensity score

Comparing methods of covariate adjustment: bottom line

My view:
> Sub-classification and matching are useful for developing understanding

> Link to CIA is transparent: units with same/similar values of X; are comparable
> Math is simple: basically just grouping, calculating DIGMs, weighting and
averaging

» But regression should be your default tool:

> Saturated regression replicates sub-classification and matching on categorical
variables (up to reweighting)

> |If estimating propensity score, can replicate sub-classification (up to
reweighting)

> Assuming linear relationship between X; and Y; can be useful; with bins and
polynomials (and splines and GAMs .. .) can be as flexible as we want

> Statistical inference straightforward
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Covariate adjustment in sparse data without the propensity score

Covariate adjustment: bottom line

To make the “selection on observables” assumption credible, you need
good observables, i.e. good measures of characteristics that affect the
outcome and differ between treatment and control groups.

Rather than spending weeks/months/years on mastering matching,
sub-classification, MLE, Bayesian models, hierarchical models, etc., you
should

» collect better covariates relevant to your question,

» find questions/settings for which there are very good covariates (RDD
as extreme example) , and

» look for questions/settings where you don’t need such good

covariates (e.g. randomized experiment, natural experiment, 1V,
diff-in-diff)

Keep the statistics simple, focus on the data, and be opportunistic.
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Two important facts about regression

Omitted variable bias formula
Suppose two covariates, Xi; and Xy;. Definitions (MM pg. 93):

The long regression includes both:
Yi=a +8Xii + yXoi + €.
The short regression includes only Xj;:
Yi=a®+B°Xi + €.

The auxiliary regression (my term) describes the relationship between
the two covariates:

Xoi = a® + m21 X4j + €7

Then the omitted variables bias formula tells us

B =B+ m21y.
Explain the last line in plain English.
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Two important facts about regression

OVB formula example: long regression

> long = lm(lnrealgross ~ treated + labour + scat + ucat, data = d)
> summary(long)

Call:
Im(formula = lnrealgross ~ treated + labour + scat + ucat, data = d)

Residuals:
Min 1Q Median 3Q Max
-4.9695 -0.4504 -0.0260 ©0.3951 3.7635

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 13.20278 0.23104 57.144 < Ze-16 ***
treated ©0.37094 0.10303 3.600 0.000356 ***
labour -0.32507 0.1068@ -3.044 0.002484 **
scatnotMentioned -0.63137 0.23696 -2.664 0.008009 **
scatotherPublic -0.65379 0.21700 -3.013 0.002746 **
scatsecondary -0.79735 0.22745 -3.506 0.000505 ***
ucatotherDegree  ©.04185 ©0.11526 ©.363 0.716738
ucatoxbridge 0.26938 0.1311@ 2.@55 0.04@516 *
Signif. codes: @ ‘***’ 9.001 ‘**’ 0.91 ‘*’ @.05 ‘.’ 0.1 * * 1

Residual standard error: 0.9991 on 419 degrees of freedom
Multiple R-squared: ©.1409, Adjusted R-squared: 0.1265
F-statistic: 9.816 on 7 and 419 DF, p-value: 2.386e-11
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Two important facts about regression

OVB formula example: short regression

> short = lm(lnrealgross ~ treated + scat + ucat, data = d) # cut out labour
> summary(short)

Call:
Im(formula = lnrealgross ~ treated + scat + ucat, data = d)

Residuals:
Min 1Q Median 3Q Max
-4.9081 -@.4111 -@.@555 @.4335 3.65%4

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 13.1768%9@ ©@.233147 56.517 < Ze-16 ***
treated 0.4107@4 ©.103199 3.980 8.13e-0@5 ***
scatnotMentioned -@.817735 ©@.231155 -3.538 0.000449 ***
scatotherPublic -0.701988 ©.218545 -3.212 0.001419 **
scatsecondary -0.955895 ©@.223573 -4.276 2.36e-0@5 ***
ucatotherDegree  ©0.005271 ©.115758 ©.046 @.963700

©.131855 1.773 0.076886 .

ucatoxbridge 0.233832
Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.5 ‘.’ 0.1 < * 1
Residual standard error: 1.809 on 420 degrees of freedom

Multiple R-squared: ©.1219, Adjusted R-squared: ©.1093
F-statistic: 9.717 on 6 and 42@ DF, p-value: 4.968e-10
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Two important facts about regression

OVB formula example: auxiliary regression

> auxiliary = 1Im(labour ~ treated + scat + ucat, data = d)
> summaryCauxiliary)

Call:
1m(formula = labour ~ treated + scat + ucat, data = d)

Residuals:
Min 1Q Median 3Q Max
-0.76547 -0.34044 -0.06668 ©.34706 ©.89441

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 0.07963 0.10549 @.755 0.45072
treated -0.12232 0.04669 -2.620 ©.00912 **
scatnotMentioned ©.57331 0.10459 5.482 7.28e-@8 ***
scatotherPublic 0.14828 ©0.09888 1.500 0.13447
scatsecondary 0.48775 0.10116 4.822 1.99%e-06 ***
ucatotherDegree  @.11252 ©0.05237 2.148 0.@3225 *
ucatoxbridge ©0.10936 0.059%66 1.833 0.06749 .

Signif. codes: @ ‘***’ @.@001 ‘**’ .01 ‘*’ 0.05 ‘.’ 0.1 * " 1
Residual standard error: ©.4565 on 42@ degrees of freedom
Multiple R-squared: ©.1786, Adjusted R-squared: 0.1669
F-statistic: 15.22 on 6 and 420 DF, p-value: 8.518e-16
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Two important facts about regression

OVB formula example: confirming equality

So is it true that
B =B+ mary.

i.e. “short equals long plus the effect of omitted times the regression of
omitted on included”?
> all.equal(coef(short)["treated"],

+ coef(long)["treated"] + coef(auxiliary)["treated"]*coef(long)["labour"])
[1] TRUE

Yes.
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Two important facts about regression

Lessons from the OVB formula

Omitting a variable causes bias in our estimate of ATE if and only if
» it is related to the treatment, conditional on other covariates, and
» it is related to the outcome, conditional on other covariates.

This is why
» you don'’t have to control for anything in a randomized experiment

» you don’t have to control for everything you can think of that affects Y;
- only variables related to D; (and Y;) conditional on other covariates

» you don’t have to control for anything other than the running variable
in an RDD
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Two important facts about regression

“Regression anatomy”
The coefficient 8’ in the long regression
Yi= o + B Xii + yXai + €.

can be calculated by performing the reverse auxiliary regression (my
term)

Xij = @® + m2Xi + €f,

getting the residuals,
Xij = Xy - (&a + ﬁ12X2i),
and regressing Y; on those (“outcome-on-residuals” regression):
Yi=a" +pXi+e.
e, B =4.
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Two important facts about regression

Regression anatomy: “reverse auxiliary” regression

> reverse.auxiliary = lm(treated ~ labour + scat + ucat, data = d)
> summary(reverse.auxiliary)

Call:
1m(formula = treated ~ labour + scat + ucat, data = d)

Residuals:
Min 1Q Median 3Q Max
-0.8272 -0.3891 -0.2577 ©.5499 ©.7952

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 0.827168 1017@5 8.133 4.77e-15 ***
labour -0.131437 050172 -2.620 ©.009119 **

scatnotMentioned -@.322600
scatotherPublic -@.371681
scatsecondary -0.432604
ucatotherDegree -©.005414
ucatoxbridge -0.058278

Signif. codes: @ “**** 9.@01 ‘**’ 0.01 ‘*’ .05 ‘.7 0.1 ‘ ' 1

4
2

111115 -2.903 0.003887 **
101160 -3.674 0.000269 ***
105632 -4.@95 5.06e-05 ***
054588 -0.099 ©.921037
062022 -0.940 0.347949

D000 e®

Residual standard error: @.4732 on 420 degrees of freedom
Multiple R-squared: @.07118, Adjusted R-squared: @.05791
F-statistic: 5.364 on 6 and 42@ DF, p-value: 2.364e-85

> resids.from.ra = resid(reverse.auxiliary)
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Two important facts about regression

Regression anatomy: “outcome-on-residuals” regression

> star.reg = lm(d$lnrealgross ~ resids.Frbm.ra)
> summary(star.reg)

Call:
1m(formula = d$lnrealgross ~ resids.from.ra)

Residuals:
Min 1Q Median 3Q Max
-4.0169 -0.4474 -0.0796 ©.4241 3.6068

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 12.619@ 0.0511 246.939 < 2e-16 ***
resids.from.ra ©.3709 0.1089 3.406 0.000721 ***

Signif. codes: @ ‘***’ 9,001 ‘**’ 0.01 ‘*’ @.05 ‘.” 0.1 * ’ 1
Residual standard error: 1.056 on 425 degrees of freedom
Multiple R-squared: ©.02658, Adjusted R-squared: ©.02429
F-statistic: 11.6 on 1 and 425 DF, p-value: @.0007208

> all.equal(coef(long)[“treated"], coef(star.reg)["resids.from.ra"], check.attributes = F)
[1] TRUE

It works!
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Two important facts about regression

Lessons from regression anatomy

The OLS coefficient on D; measures the relationship between Y; and the
part of D; not “explained” by X;.

What is the CIA in any regression that claims to measure the effect of D;
on Y;?

The part of D; not “explained” by X; (the residual from the “reverse auxiliary
regression”) is not related to the potential outcomes, i.e. as-if random.
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Two important facts about regression

Regression CIA: illustration
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Two important facts about regression
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