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Motivation

If treatment is randomized, the difference in group means (DIGM) (naive
estimator) is an unbiased estimator of the average treatment effect
(ATE):

E
[
DIGM

]
≡ E[Y1i |Di = 1] − E[Y0i |Di = 0] (definition)

= E[Y1i] − E[Y0i] (randomization)

= ATE (definition)

But more generally (e.g. in observational study),

E
[
DIGM

]
= ATT + selection bias

This is why, instead of just calculating DIGM, we control for covariates
using e.g. regression.

DIGM is also known as the naive estimator. Let’s not be so naive!
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Plan

I Introduction to covariate adjustment and the key assumption behind
it: the conditional independence assumption (CIA)

I With running example of “MPs for Sale?” (2009), illustration using
three methods of covariate adjustment:

I sub-classification
I matching
I regression

Ultimately use regression, but understand others.
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Introduction to covariate adjustment

Setup

You are given a very large (population-level) dataset with three columns,
labeled Yi , Di , and Xi , and asked to assess the effect of Di on Yi .

You calculate DIGM: E[Y1i |Di = 1] − E[Y0i |Di = 0] = 1.5 − 0.75 = 0.75.

But using table() and prop.table() in R you observe that Di is related
to Xi :

Joint distribution of Xi and Di in the dataset
Di = 0 Di = 1

Xi = 0 3/8 1/8
Xi = 1 1/8 3/8

To discuss: Think of an example where Di and Xi might be related in this
way. What does Y represent in your example?
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Introduction to covariate adjustment

Outcomes by X and D

You calculate the mean outcomes by Xi and Di :

Di = 0 Di = 1
Xi = 0 0 0
Xi = 1 3 2

So, what is the effect of Di on Yi?
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Introduction to covariate adjustment

Conditional independence assumption (CIA)

Note: Cannot proceed without assumptions.

One possible assumption: treatment “as-if random” within levels of Xi .

Equivalent (but more technical) assumptions:
I potential outcomes independent of Di given Xi : Y0i ,Y1i y Di |Xi

I no selection bias conditional on Xi :
E[Y0i |Di = 1,Xi = x] = E[Y0i |Di = 0,Xi = x] ∀x ∈ {0, 1}

This is the conditional independence assumption (CIA), aka “selection
on observables”.

If CIA holds, DIGM gives us ATE within levels of Xi .
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Introduction to covariate adjustment

CATE, ATE, ATT, ATC
ATE where Xi = x is called Conditional Average Treatment Effect
(CATEx ).

CATEx ≡ E[Y1i − Y0i |Xi = x]

Given CIA we have

Di = 0 Di = 1 CATEx

Xi = 0 0 0 0
Xi = 1 3 2 -1

(Thinking of examples, why would CATEx vary with x?)

We summarize average effect of Di on Yi by calculating weighted
averages of CATExs.

When CATEx weighted by distribution of Xi in the
I population: ATE
I treatment group: ATT (ATE on the treated)
I control group: ATC (ATE on the control)
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Introduction to covariate adjustment

CATE, ATE, ATT, ATC in this example

Reminder: our CATExs

Di = 0 Di = 1 CATEx

Xi = 0 0 0 0
Xi = 1 3 2 -1

Reminder: Joint distribution of Xi and Di :

Di = 0 Di = 1
Xi = 0 3/8 1/8
Xi = 1 1/8 3/8

Reminder: When CATEx weighted by distribution of Xi in the

I population: ATE

I treatment group: ATT (ATE on the treated)

I control group: ATC (ATE on the control)

So what is ATE, ATT, ATC in this example (given CIA)?
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Introduction to covariate adjustment

Illustration for this example
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Introduction to covariate adjustment

Illustration for this example (2)
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Check understanding:

I Why are ATE, ATT, ATC
all the same in a
randomized experiment?

I How can the DIGM be
positive when neither
CATE is positive?
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Introduction to covariate adjustment

Mathier explanation

The ATT is the weighted average of the CATEs, where the weights reflect
the distribution of Xi in the treatment group.

ATT =
∑

x=0,1

E
[
Yi(1) − Yi(0)|Xi = x

]
Pr

(
Xi = x |Di = 1

)
(1)

=
∑

x=0,1

CATExPr
(
Xi = x |Di = 1

)
(2)

In this case, this is

ATT = 0 × 1/4 + −1 × 3/4 = −3/4.

The weights of 1/4 and 3/4 come from the joint distribution: the probability
of Xi = 1 given that Di = 1 can be calculated as the ratio 3/8

3/8+1/8 , which is
a simple application of Bayes’ Theorem.
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Introduction to covariate adjustment

Does the CIA hold?

The CIA is an untestable assumption: it relies on “theory”, some indirect
evidence.
Two key ways it might fail in this example:
I There might be another variable Zi related to Di that affects Yi

(selection bias persists).
I Xi might be an outcome, so controlling for it introduces

post-treatment bias. e.g. suppose Di had been randomly assigned –
how would we interpret this data?
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Introduction to covariate adjustment

What do we condition on/control for?

For the CIA to hold, we must control for every variable that
I is not an effect of Di

I affects Di and, conditional on other control variables, affects Yi .

(For guidance on what to control for, see Morgan & Winship and the
“backdoor criterion”.)

To discuss: In regressions, generally only one coefficient (at most) can be
interpreted as a (causal) effect. Why is that?
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Introduction to covariate adjustment

How do we condition/control?

We’ll discuss three approaches:
I Sub-classification

I put units into cells according to Xi
I calculate CATEx within cells and average

I Matching
I for each treated unit (or each control unit) (or each unit), find unit(s)

same/similar on Xi with opposite Di
I calculate DIGM

I Regression
I estimate E[Yi] = β0 + β1Di + β2Xi

For simple cases, basically identical.

Link to CIA more obvious for sub-classification and matching, but
regression more flexible and common.
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Introduction to covariate adjustment

Running example

Eggers and Hainmueller, “MPs for Sale” (2009)

Basic question: Was election to the UK House of Commons financially
rewarding?

I Units: Candidates who ran for parliament at some point between
1950 and 1970

I Treatment: Winning at least one election
I Outcome: Wealth at death (probate value)

What about the DIGM as an estimator for ATE?
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Introduction to covariate adjustment

Covariates

For each candidate, we have
I party
I electoral results
I year of birth
I secondary education
I university education
I profession

How can we use these to make better
comparisons?
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Covariate adjustment based on categorical variables

CIA based on categorical variables

Suppose we believe that CIA holds given candidate’s
I party (Labour, Conservative)
I type of secondary education (Eton, other public, other, not

mentioned), and
I type of university education (Oxbridge, other, not mentioned)

i.e. For pairs of candidates with the same party, school, and university, MP
status as-if randomly assigned – not related to potential outcomes.

Plausible?
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Covariate adjustment based on categorical variables

Number of candidates by party & education

Party: Con. Party: Lab.
University: Oxbridge Other None Oxbridge Other None

School: Eton 16 4 5 2 0 0
Other public 40 25 31 21 10 3

Other 10 25 31 19 49 31
Not mentioned 7 12 17 5 27 37
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Covariate adjustment based on categorical variables

Number of MPs and unsuccessful candidates by cell

Note: (2,1) indicates 2 elected candidates and 1 unelected candidate

Party: Con. Party: Lab.
University: Oxbridge Other None Oxbridge Other None

School: Eton (14, 2) (3, 1) (4, 1) (0, 2) (0, 0) (0, 0)
Other public (18, 22) (11, 14) (11, 20) (6, 15) (4, 6) (1, 2)

Other (2, 8) (8, 17) (10, 21) (2, 17) (15, 34) (13, 18)
Not mentioned (4, 3) (7, 5) (12, 5) (1, 4) (8, 19) (11, 26)
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Covariate adjustment based on categorical variables

Difference in group means (of log wealth at death) by cell

Party: Con. Party: Lab.
University: Oxbridge Other None Oxbridge Other None

School: Eton 2.61 2.66 -0.67 - - -
Other public 0.35 0.15 0.48 0.65 -0.27 0.58

Other 1.05 0.33 0.51 -0.02 -0.01 0.45
Not mentioned 0.06 1.48 0.25 -0.6 0.27 0.06
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Covariate adjustment based on categorical variables

Sub-classification

Sub-classification: calculate DIGMs in each cell; average them.

Party: Con. Party: Lab.
University: Oxbridge Other None Oxbridge Other None

School: Eton 2.61 2.66 -0.67 - - -
Other public 0.35 0.15 0.48 0.65 -0.27 0.58

Other 1.05 0.33 0.51 -0.02 -0.01 0.45
Not mentioned 0.06 1.48 0.25 -0.6 0.27 0.06

Average DIGM across cells

weighting by #candidates in each cell: .40 (ATE)
weighting by #MPs in each cell: .54 (ATT)
weighting by #non-MPs in each cell: .31 (ATC)
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Covariate adjustment based on categorical variables

Matching

Matching: fill in missing potential outcomes using “nearest neighbor” with
opposite treatment status. (e.g. for Tory MP born in 1928 who went to
Oxford, use Tory non-MP born in 1927 who went to Cambridge)

Exact matching: fill in missing potential outcomes using average of exact
matches with opposite treatment status.

For example:

Party School University Treated ln(Wealth) Y0i Y1i

Labour Other Public Not Mentioned 1 12.7 ?12.15 12.7
Labour Other Public Not Mentioned 0 11.8 11.8 ?12.7
Labour Other Public Not Mentioned 0 12.5 12.5 ?12.7

To get ATE: take difference in mean of Y1i and Y0i (with imputations).
To get ATT: same, but only using treated rows.
To get ATC: same, but only using control rows.
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Covariate adjustment based on categorical variables

Exact matching: implementation

Using Matching library:
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Covariate adjustment based on categorical variables

Regression
Given CIA, regression implies regressing Yi on an indicator for treatment
and a dummy for every cell.
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Covariate adjustment based on categorical variables

Regression (2)
Equivalent: regressing Yi on each of the categorical variables and their
interactions:
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Covariate adjustment based on categorical variables

Saturated regression models

This is a saturated model, i.e. one with a dummy for each possible
combination of the explanatory variables:
I all “main effects” (Labour, Eton, . . . ), and
I all interactions (Labour × Eton, Labour × OtherPublic, . . . )).

Given categorical variables, a saturated model is the most flexible possible
functional form.

To discuss: Why would you prefer a saturated model to a model with only
main effects, no interactions?
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Covariate adjustment based on categorical variables

Comparison of techniques

Comparison of estimates
ATE ATT ATC

Sub-classification .40 .54 .31
Matching (exact) .40 .54 .31

Regression .37 - -

To note:
I ATE from sub-classification is average of cell DIGMs weighted by
{#units in cell} (definition).

I ATE from (exact) matching is exactly the same thing.
I ATE from saturated regression is the average of cell DIGMs weighted

by {#units in cell × variance of treatment in cell} (Angrist and Pischke
MHE p. 75).
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Covariate adjustment using the propensity score

CIA based on further categorical variables

Perhaps we don’t quite believe the CIA based only on party, secondary
education, and university education.

The candidate’s profession before entering politics is another likely
confounder.

But here we run into a problem of sparse data (curse of dimensionality):
I Sub-classification: many empty cells
I Matching: few exact matches
I (Saturated) regression: many empty groups, NA coefficients

You may get an estimate, but it will be based on an unrepresentative
subset (far from true ATE).
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Covariate adjustment using the propensity score

How to proceed when many cells are empty

What can we do?
I Sub-classification: propensity score methods
I Matching: propensity score methods, nearest neighbor, coarsened

exact matching
I Regression: propensity score methods, stronger CIA (i.e. less flexible

functional form, e.g. drop interactions)
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Covariate adjustment using the propensity score

Propensity score methods
The propensity score is the probability of treatment, given covariates:

p(Xi) ≡ Pr(Di = 1|Xi) = E[Di |Xi]

This can be estimated with OLS (linear probability model) or logistic
regression (logit).

Ideally, the propensity score summarizes covariates that differ between
treated and untreated units.

The CIA becomes: Y0i ,Y1i y Di | p(Xi)

Having estimated the propensity score, we can
I Sub-classification: calculate DIGM within bands of the propensity

score
I Matching: match units based on nearby propensity scores
I Regression: regress outcome on treatment controlling flexibly for the

propensity score
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Covariate adjustment using the propensity score

Propensity score example
I regress the treatment indicator on party, secondary school category,
university category, year of birth (yob), yob2, yob3, gender, 11 profession
indicators.

Take a look at the results:
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Covariate adjustment using the propensity score

Propensity score example (2)
The propensity score is the prediction from this model:

Compare the distribution by treatment status:
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Covariate adjustment using the propensity score

Sub-classification on the propensity score

Let’s start with 10 sub-classes of the propensity score:

Counts and DIGMs in each sub-class:
Subclass #units #MPs #non-MPs DIGM

1 43 4 39 -0.24
2 43 13 30 0.01
3 43 13 30 0.9
4 42 12 30 0.33
5 43 18 25 0.24
6 43 15 28 -0.13
7 42 15 27 0.35
8 43 20 23 0.5
9 43 26 17 0.47
10 40 29 11 1.69

ATE: 0.40
ATT: 0.57
ATC: 0.30

How many sub-classes? Bias-variance tradeoff.
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Covariate adjustment using the propensity score

Nearest-neighbor matching on the propensity score

Using defaults in Matching:

ATE: 0.42
ATT: 0.50
ATC: 0.38
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Covariate adjustment using the propensity score

Balance statistics for matching
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Covariate adjustment using the propensity score

Regression controlling for the propensity score

Controlling via dummies for 10 sub-classes:
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Covariate adjustment using the propensity score

Regression controlling for the propensity score (2)

Controlling via polynomials of propensity score:
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Covariate adjustment using the propensity score

Comparison of techniques (propensity score version)

Comparison of estimates
ATE ATT ATC

Sub-classification .40 .57 .30
Matching .42 .50 .38

Regression: bins .41 - -
Regression: polynomials .43 - -

To note:
I Propensity score is estimated, which should be considered in

variance
I Our model for the propensity score has no interactions – stronger

assumptions than previous exercise
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Covariate adjustment in sparse data without the propensity score

Sub-classification without the propensity score

To avoid empty cells, you might try playing around with how cells are
defined.

This is basically how I think about coarsened exact matching (CEM) by
King et al.
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Covariate adjustment in sparse data without the propensity score

Nearest-neighbor matching with the covariates
We can do nearest-neighbor matching with the covariates themselves, rather than
propensity score.

But which units are “near” each other?

e.g. Should I match a Tory born in 1928 who went to Oxford to a

I Tory born in 1927 with no university listed?

I Labour candidate born in 1928 who went to the LSE?

I Tory born in 1942 who went to Oxford?

Some of the options:

I scale distance on each variable by inverse of the variable’s sample variance (default
in Matching when not exact)

I scale distance by the inverse of the covariance matrix (Mahalanobis distance)

I genetic matching: search for a weight matrix that yields overall covariate balance
(Diamond and Sekhon)
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Covariate adjustment in sparse data without the propensity score

Regression

Adding control variables to a regression model is very straightforward.

With sparser data, can no longer use saturated models; rely more on
linearity, additivity (as with the estimation of the propensity score).

These two approaches should give you very similar results:

1. Estimate propensity score p(Xi) based on model:

Di = α0 + α1Xi1 + α2Xi2 + . . .+ αK XiK

Regress Yi on Di and a flexible function of the propensity score.

2. Regress Yi on Di and covariates Xi1 to XiK .
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Covariate adjustment in sparse data without the propensity score

Regression: propensity score vs. covariates

In the “MPs for Sale” example:

Approach ATE
Regress Yi on Di and 10 bins of propensity score .43
Regress Yi on Di and 4 polynomials of propensity score .41
Regress Yi on Di and covariates from propensity score model .41
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Covariate adjustment in sparse data without the propensity score

Comparing methods of covariate adjustment: bottom line

My view:

I Sub-classification and matching are useful for developing understanding

I Link to CIA is transparent: units with same/similar values of Xi are comparable
I Math is simple: basically just grouping, calculating DIGMs, weighting and

averaging

I But regression should be your default tool:

I Saturated regression replicates sub-classification and matching on categorical
variables (up to reweighting)

I If estimating propensity score, can replicate sub-classification (up to
reweighting)

I Assuming linear relationship between Xi and Yi can be useful; with bins and
polynomials (and splines and GAMs . . . ) can be as flexible as we want

I Statistical inference straightforward
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Covariate adjustment in sparse data without the propensity score

Covariate adjustment: bottom line

To make the “selection on observables” assumption credible, you need
good observables, i.e. good measures of characteristics that affect the
outcome and differ between treatment and control groups.

Rather than spending weeks/months/years on mastering matching,
sub-classification, MLE, Bayesian models, hierarchical models, etc., you
should
I collect better covariates relevant to your question,
I find questions/settings for which there are very good covariates (RDD

as extreme example) , and
I look for questions/settings where you don’t need such good

covariates (e.g. randomized experiment, natural experiment, IV,
diff-in-diff)

Keep the statistics simple, focus on the data, and be opportunistic.
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Two important facts about regression

Omitted variable bias formula
Suppose two covariates, X1i and X2i . Definitions (MM pg. 93):

The long regression includes both:

Yi = αl + βlX1i + γX2i + e l
i .

The short regression includes only X1i :

Yi = αs + βsX1i + es
i .

The auxiliary regression (my term) describes the relationship between
the two covariates:

X2i = αa + π21X1i + ea
i .

Then the omitted variables bias formula tells us

βs = βl + π21γ.

Explain the last line in plain English.
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Two important facts about regression

OVB formula example: long regression
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Two important facts about regression

OVB formula example: short regression
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Two important facts about regression

OVB formula example: auxiliary regression
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Two important facts about regression

OVB formula example: confirming equality

So is it true that
βs = βl + π21γ.

i.e. “short equals long plus the effect of omitted times the regression of
omitted on included”?

Yes.
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Two important facts about regression

Lessons from the OVB formula

Omitting a variable causes bias in our estimate of ATE if and only if
I it is related to the treatment, conditional on other covariates, and
I it is related to the outcome, conditional on other covariates.

This is why
I you don’t have to control for anything in a randomized experiment
I you don’t have to control for everything you can think of that affects Yi

- only variables related to Di (and Yi) conditional on other covariates
I you don’t have to control for anything other than the running variable

in an RDD
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Two important facts about regression

“Regression anatomy”
The coefficient βl in the long regression

Yi = αl + βlX1i + γX2i + e l
i .

can be calculated by performing the reverse auxiliary regression (my
term)

X1i = αa + π12X2i + ea
i ,

getting the residuals,

X̃1i = X1i −
(
α̂a + π̂12X2i

)
,

and regressing Yi on those (“outcome-on-residuals” regression):

Yi = α∗ + β∗X̃1i + e∗i .

i.e., β∗ = βl .
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Two important facts about regression

Regression anatomy: “reverse auxiliary” regression
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Two important facts about regression

Regression anatomy: “outcome-on-residuals” regression

It works!
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Two important facts about regression

Lessons from regression anatomy

The OLS coefficient on Di measures the relationship between Yi and the
part of Di not “explained” by Xi .

What is the CIA in any regression that claims to measure the effect of Di

on Yi?

The part of Di not “explained” by Xi (the residual from the “reverse auxiliary
regression”) is not related to the potential outcomes, i.e. as-if random.
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Two important facts about regression

Regression CIA: illustration
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