Causal inference week 6: Differences-and-Differences

Andy Eggers

Oxford DPIR

HT 2019

Introduction

Overview and motivating example

Diff-in-diff theory

Setup Diff-in-before-and-afters Diff-in-DIGMs

Application: refugees and voting in Greece

Standard errors

Overview

Strategies for estimating effects of treatments so far:

- Randomize treatment and take the DIGM
- Identify and control for confounding variables such that the CIA holds
- Identify an instrumental variable and use two-stage-least-squares to estimate average treatment effect for compliers
- Identify a situation in which the treatment depends on a cutoff

Today: using observations at more than one point in time.

As with IV, works even if there is (certain types of) confounding.

Introduction

Overview and motivating example

Diff-in-diff theory

Setup Diff-in-before-and-afters Diff-in-DIGMs

Application: refugees and voting in Greece

Standard errors

Overview and motivating example

Madrid train bombing, 11 March 2004

Question: How did the M11 attack affect the election three days later?

Possible research designs

How could you use

- polls
- post-election surveys (which asked e.g. "Did the terrorist attack of March 11th in Madrid influence your vote?") (see Bali 2007, *Electoral Studies*)

to estimate the effect of the attacks on relative support for the Conservatives vs Socialists?

Two differences you could estimate

Montalvo (2011) points out that Spanish nationals living abroad voted *before* the bombing.

Two differences you could estimate

Montalvo (2011) points out that Spanish nationals living abroad voted *before* the bombing.

What about estimating the effect of the attacks by

- comparing the results in 2004 for resident and non-resident voters? (individual or province-level, with some covariates) (cross-sectional)
- comparing the results for non-resident voters in 2004 and 2000? (individual or province-level, with some covariates).
 (before-and-after, "time-series")

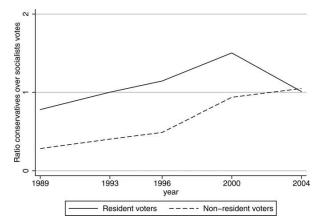
Using both: diff-in-diff

Diff-in-diff idea: what about comparing the before-and-after (diff) for residents and non-residents (in diff)?

Using both: diff-in-diff

Diff-in-diff idea: what about comparing the before-and-after (diff) for residents and non-residents (in diff)?

Measure the difference between non-resident and resident voters in 2004, but then subtract this same difference measured in $2000 \rightarrow difference-in-differences$.



Scope of application

Simple case (today): binary treatment, applied at one point in time (but not to everyone)

More general case (next week): general treatment, applied in any pattern

Commonalities: ;

- multiple observations over time, with treatment varying within group or unit over time
- estimation via a regression that controls for time period and group or unit (fixed effects)
- CIA relies on no time-variant confounders: all omitted variables must be constant over time

Introduction

Overview and motivating example

Diff-in-diff theory

Setup Diff-in-before-and-afters Diff-in-DIGMs

Application: refugees and voting in Greece

Standard errors

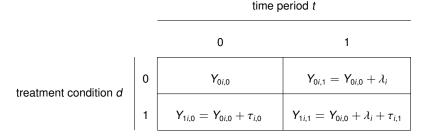
Notation for time periods

Up to now:

- Potential outcomes: Y_{0i}, Y_{1i}
- Definition linking them: $\tau_i \equiv Y_{1i} Y_{0i}$

With two time periods:

- Potential outcomes: Y_{0i,t}, Y_{1i,t}
- Definitions linking them:



NB: This is notation, not an assumption.

Notation for groups

Suppose units belong to one of two groups, T and C, with neither exposed to treatment in period 0 and group T exposed to treatment in period 1. Let g_i denote *i*'s group.

For example,

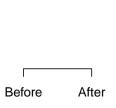
$$\Xi[Y_{1i,1} \mid g_i = T]$$

is the average potential outcome under treatment in time period 1 for units in group T.

Setup

Two groups, two time periods

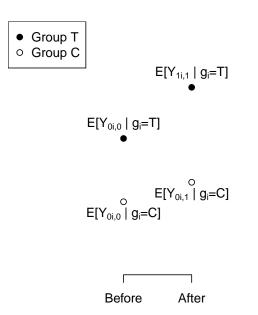
• Group T • Group C



0

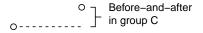
0

Adding notation



Before-and-after in group C

Group TGroup C



Before-and-after in group C

After-minus-before in group C is

$$E[Y_{0i,1} | g_i = C] - E[Y_{0i,0} | g_i = C]$$

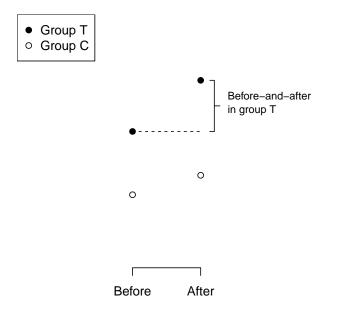
We use the definitions above to restate in terms of the time trend:

$$= E[Y_{0i,0} + \lambda_i | g_i = C] - E[Y_{0i,0} | g_i = C]$$

= $E[\lambda_i | g_i = C] + E[Y_{0i,0} | g_i = C] - E[Y_{0i,0} | g_i = C]$
= $E[\lambda_i | g_i = C]$

= Time trend in group C

Before-and-after in group T



Before-and-after in group T

After-minus-before in group T is

$$E[Y_{1i,1} | g_i = T] - E[Y_{0i,0} | g_i = T]$$

We use the definitions above to restate in terms of time trend and ATE:

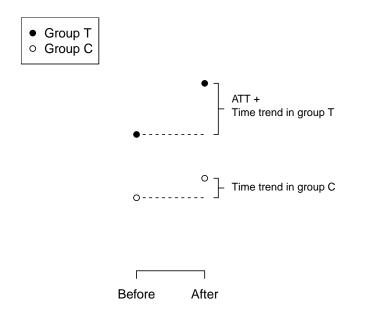
$$= E[Y_{0i,0} + \lambda_i + \tau_{i,1} | g_i = T] - E[Y_{0i,0} | g_i = T]$$

$$= E[\lambda_i | g_i = T] + E[\tau_{i,1} | g_i = T] + E[Y_{0i,0} | g_i = T] - E[Y_{0i,0} | g_i = T]$$

$$= E[\lambda_i \mid g_i = T] + E[\tau_{i,1} \mid g_i = T]$$

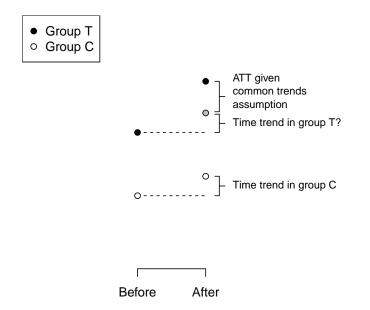
= Time trend in group T + ATE in group T

Before-and-after in both groups

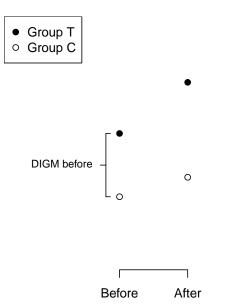


Common trend?

ATT given common trend assumption



DIGM before



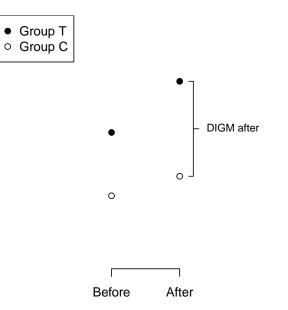
DIGM before

DIGM in the pre-treatment period is

$$E[Y_{0i,0} | g_i = T] - E[Y_{0i,0} | g_i = C]$$

By definition, this is selection bias.

DIGM after



DIGM after

The DIGM at time 1 is

$$E[Y_{1i,1} | g_i = T] - E[Y_{0i,1} | g_i = C]$$

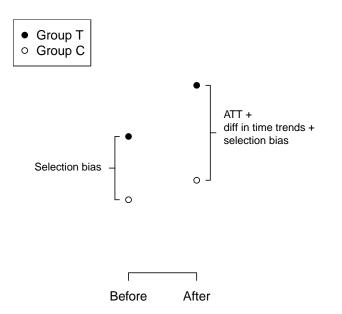
We use the definitions above to restate in terms of time trend, selection bias, and ATE:

 $= E[Y_{0i,0} + \lambda_i + \tau_{i,1} | g_i = T] - E[Y_{0i,0} + \lambda_i | g_i = C]$

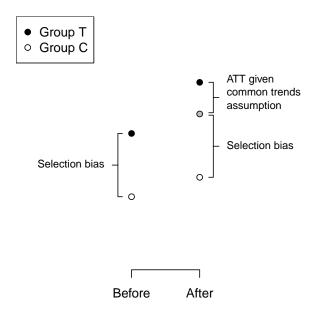
 $= E[Y_{0i,0} | g_i = T] + E[\lambda_i | g_i = T] + E[\tau_{i,1} | g_i = T] - E[Y_{0i,0} | g_i = C] - E[\lambda_i | g_i = C]$

- $= E[Y_{0i,0} | g_i = T] E[Y_{0i,0} | g_i = C] + E[\lambda_i | g_i = T] E[\lambda_i | g_i = C] + E[\tau_{i,1} | g_i = T]$
- = Selection bias + Time trend in group T Time trend in group C + ATE in group T

Both **DIGMs**

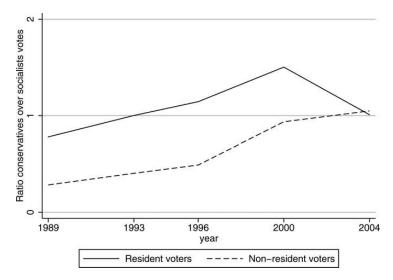


ATT given common trends assumption



Can the common trends assumption be tested?

No. But common trends in several pre-treatment periods is suggestive:



Introduction

Overview and motivating example

Diff-in-diff theory

Setup Diff-in-before-and-afters Diff-in-DIGMs

Application: refugees and voting in Greece

Standard errors

Dinas et al (2018) on political impact of refugees

- Question: Did the influx of refugees in Greece increase support for the right-wing Golden Dawn party in 2015?
- Treatment: Large number of refugees arriving in locality
- Outcome: Golden Dawn vote share in locality

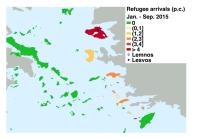
To consider:

- What about a cross-sectional approach? What covariates might help?
- How might an IV approach help?
- How can we use variation over time in a diff-in-diff?

Dinas et al on the Golden Dawn (2)

Islands that received lots of refugees may vote differently even without the refugee influx.

Maybe that difference is constant over time.



Common trends assumption: if they had not received refugees, islands that did receive refugee would have seen the same **change** in support for Golden Dawn as other islands.

To consider: are these other islands really untreated?

Application: refugees and voting in Greece

Dinas et al on the Golden Dawn (3)

Golden Dawn vote share (in %) Golden Dawn vote share (in %) 9-9-6-6 **Municipalities** 3-Townships Control Control Treated Treated 2015 Sep. 2012 May 2012 June 2015 Jan. 2012 May 2012 June 2015 Jan. 2015 Sep.

Parallel trends at the municipal and township level

Diff-in-diff: implementation: method 1

Method 1: group-period interactions

- data structure: two rows for each municipality (elections of Jan. 2015, Sept. 2015)
- evertr: 1 for municipalities that received refugees
- post: 1 for election after the influx
- gdper: support for Golden Dawn

Use command

```
lm(gdper ~ evertr*post)
```

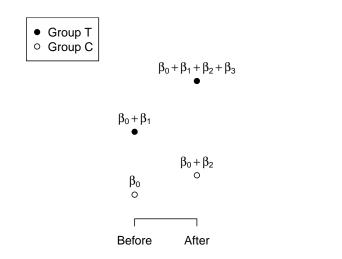
to run regression:

 $gdper_{mt} = \beta_0 + \beta_1 evertr_m + \beta_2 post_t + \beta_3 evertr_m \times post_t$

municipality	evertr	post	gdper
Αίγινας	0	0	6.363300
Αίγινας	0	1	7.617789
Αγίου Βασιλείου	0	0	2.714932
Αγίου Βασιλείου	0	1	3.694069
Αγίου Ευστρατίου	0	0	4.878048
Αγίου Ευστρατίου	0	1	5.988024
Αγίου Νικολάου	0	0	3.159049
Αγίου Νικολάου	0	1	4.604597
Αγαθονησίου	1	0	3.278688
Αγαθονησίου	1	1	5.000000
Αγκιστρίου	0	0	6.129032
Αγκιστρίου	0	1	9.981852
Αλοννήσου	0	0	5.727377
Αλοννήσου	0	1	5.976096
· · ·			

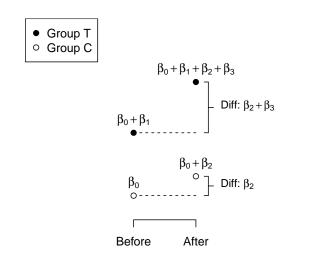
Interpretation of coefficients using method 1

 $gdper_{mt} = \beta_0 + \beta_1 evertr_m + \beta_2 post_t + \beta_3 evertr_m \times post_t$

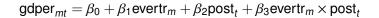


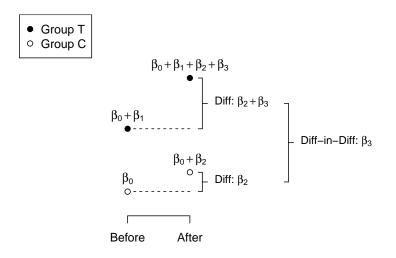
Interpretation of coefficients using method 1

 $gdper_{mt} = \beta_0 + \beta_1 evertr_m + \beta_2 post_t + \beta_3 evertr_m \times post_t$



Interpretation of coefficients using method 1





Application: refugees and voting in Greece

Diff-in-diff implementation: method 1 Method 1: group-period interactions

Regression output:

```
Call:
lm(formula = gdper ~ evertr * post, data = d[!is.na(d$muni) &
   d$election %in% c("pre3", "post"), ])
Residuals:
            10 Median
   Min
                           30
                                 Max
-5.6730 -1.6899 -0.2142 1.3753 9.1088
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3810 0.2440 17.954 < 2e-16 ***
          0.6257 0.6866 0.911 0.363315
evertr
          1.2921 0.3451 3.744 0.000241 ***
post
evertr:post 2.1052 0.9710 2.168 0.031413 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.223 on 186 degrees of freedom
Multiple R-squared: 0.1769. Adjusted R-squared: 0.1637
F-statistic: 13.33 on 3 and 186 DF. p-value: 6.435e-08
```

Diff-in-diff implementation: method 2

Method 2: group & time dummies and treatment indicator

- data structure: four rows for each municipality (elections of May 2012, June 2012, Jan. 2015, Sept. 2015)
- evertr: 1 for municipalities that received refugees
- election: date of election (factor)
- treatment: 1 if evertr = 1 and Sept. 2015
- gdper: support for Golden Dawn

municipality	evertr	election	treatment	gdper
Αίγινας	0	May12	0	7.9822884
Αίγινας	õ	June12	õ	7.2771678
Αίγινας	õ	Jan15	ŏ	6.3633003
Αίγινας	õ	Sept15	õ	7.6177893
γίου Βασιλείου	ø	May12	ø	2.5829175
γίου Βασιλείου	ŏ	June12	ŏ	4.2843981
γίου Βασιλείου	ŏ	Jan15	õ	2.7149322
γίου Βασιλείου	ŏ	Sept15	ŏ	3.6940687
ίου Ευστρατίου	ő	May12	õ	4.9549551
ίου Ευστρατίου	ő	June12	ő	4.7619047
ίου Ευστρατίου	ŏ	Jan15	ŏ	4.8780484
ίου Ευστρατίου	ő	Sept15	ő	5.9880238
Αγίου Νικολάου	ő	May12	ő	2.8652139
Αγίου Νικολάου	ő	June12	ő	3.0493212
Αγίου Νικολάου	ő	Jan15	ő	3.1590488
Αγίου Νικολάου	ő	Sept15	ő	4.6045966
Αγαθονησίου	1	May12	ő	3.5714288
Αγαθονησίου	1	June12	0	4.6875000
Αγαθονησίου	1	Jan15	0	3.2786884
Αγαθονησίου	1	Sept15	1	5.0000000

Use command

lm(gdper ~ as.factor(election) + evertr + treatment -1)
to run regression:

 $gdper_{mt} = \alpha_t + \beta_1 evertr_m + \beta_2 treatment_{mt}$

Α Α Α Α Α Υ ί Α Υί Α Υί

Diff-in-diff implementation: method 2

Method 2: group & time dummies and treatment indicator

Regression output:

```
Call:
lm(formula = gdper ~ evertr + as.factor(election) + treatment -
   1, data = d[!is.na(d$muni), ])
Residuals:
   Min
            10 Median
                           30
                                 Max
-5.6730 -1.8094 -0.3837 1.2926 13.3359
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                                    0.4488 1.453
                                                    0.1471
evertr
                          0.6521
as.factor(election)Sept15 5.6730 0.2763 20.534 <2e-16 ***
as.factor(election)Jan15 4.3776 0.2644 16.558 <2e-16 ***
as.factor(election)June12 5.3529 0.2644 20.247 <2e-16 ***
as.factor(election)May12 5.5027 0.2644 20.813 <2e-16 ***
                          2.0788
treatment
                                    0.8976 2.316 0.0211 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.517 on 374 degrees of freedom
Multiple R-squared: 0.8253, Adjusted R-squared: 0.8225
F-statistic: 294.4 on 6 and 374 DF, p-value: < 2.2e-16
```

Diff-in-diff implementation: method 3

Method 3: unit & time dummies and treatment indicator

	municipality	evertr	election	treatment	gdper
	Αίγινας	0	May12	0	7.9822884
	Αίγινας	0	June12	0	7.2771678
	Αίγινας	0	Jan15	0	6.3633003
We have controlled for group	Αίγινας	0	Sept15	0	7.6177893
	Αγίου Βασιλείου	0	May12	0	2.5829175
differences with a group	Αγίου Βασιλείου	0	June12	0	4.2843981
	Αγίου Βασιλείου	0	Jan15	0	2.7149322
dummy.	Αγίου Βασιλείου	0	Sept15	0	3.6940687
)	Αγίου Ευστρατίου	0	May12	0	4.9549551
	Αγίου Ευστρατίου	0	June12	0	4.7619047
	Αγίου Ευστρατίου	0	Jan15	0	4.8780484
What about using	Αγίου Ευστρατίου	0	Sept15	0	5.9880238
-	Αγίου Νικολάου	0	May12	0	2.8652139
<i>municipality</i> dummies	Αγίου Νικολάου	0	June12	0	3.0493212
	Αγίου Νικολάου	0	Jan15	0	3.1590488
instead?	Αγίου Νικολάου	0	Sept15	0	4.6045966
instead.	Αγαθονησίου	1	May12	0	3.5714288
	Αγαθονησίου	1	June12	0	4.6875000
	Αγαθονησίου	1	Jan15	0	3.2786884
	Αγαθονησίου	1	Sept15	1	5.0000000
Lloo oommond					

Use command

lm(gdper ~ treatment + as.factor(election) + as.factor(muni) -1)
to run regression

 $gdper_{mt} = \beta_1 treatment_{mt} + \alpha_t + \gamma_m$

Application: refugees and voting in Greece

Diff-in-diff implementation: method 3

Method 3: unit & time dummies and a treatment indicator

```
Regression output:
```

```
Call:
lm(formula = qdper \sim treatment + as.factor(election) + as.factor(muni) -
   1. data = d[use, ])
Residuals:
            10 Median
   Min
                            30
                                   Max
-4.5855 -0.5236 -0.0003 0.4404
                                6.9990
Coefficients:
                                                Estimate Std. Error t value Pr(>|t|)
                                                  2,0788
                                                             0.3948
                                                                      5.265 2.79e-07 ***
treatment
                                                  7,7566
                                                             0.5635 13.764 < 2e-16
as.factor(election)Sept15
                                                  6.4612
as.factor(election)Jan15
                                                             0.5624 11.488 < 2e-16
as.factor(election)June12
                                                  7.4365
                                                             0.5624 13.222 < 2e-16
                                                             0.5624 13.489 < 2e-16
as.factor(election)May12
                                                  7.5862
as.factor(muni)Aviou Βασιλείου
                                                -3.9911
                                                            0.7829 -5.098 6.33e-07 ***
as.factor(muni)Aviou Ευστρατίου
                                                -2.1644
                                                            0.7829 -2.765 0.006078 **
as.factor(muni)Αγίου Νικολάου
                                                -3.8906
                                                            0.7829
                                                                    -4.969 1.17e-06 ***
                                                             0.7891 -4.683 4.41e-06 ***
as.factor(muni)Aγαθονησίου
                                                 -3.6954
as.factor(muni)Avklotpiou
                                                 4,2533
                                                            0.7829
                                                                     5.433 1.20e-07 ***
                                                             0.7829 -2.807 0.005357 **
as.factor(muni)Αλοννήσου
                                                 -2.1973
                                                 -4.5633
                                                             0.7829 -5.828 1.53e-08 ***
as.factor(muni)Aμαρίου
```

[result clipped]

Diff-in-diff implementation: group dummy or unit dummies?

Unit dummies produce lower standard errors, so why not always use them instead of **group dummies**?

Basic diff-in-diff can be done in two kinds of data:

- panel data: same units at several points in time
- repeated cross-section: may not be same units
- Cannot use unit dummies with repeated cross-section.

Introduction

Overview and motivating example

Diff-in-diff theory

Setup Diff-in-before-and-afters Diff-in-DIGMs

Application: refugees and voting in Greece

Standard errors

Problem with repeated observations

Above we got lower standard errors by using more periods:

- using elections of Jan 2015 and Sept 2015: 0.97
- adding elections of May 2012 and June 2012: 0.90

Where does this stop? What if Greece had more elections – still okay to use all of them?

Assumptions for standard errors

What does the standard error mean?

How could you tell from a simulation if it were correct?

Basic assumptions behind OLS standard errors:

- Variance of regression errors independent of X (homoskedastic)
- Regression errors independent each other (uncorrelated across units) Second assumption likely to be met in DiD case?

Standard errors

Addressing correlations among errors

Common assumption is that regression errors are independent except within clusters \rightarrow cluster-robust standard errors.

See estimatr or lfe packages (in R).

In Stata, see cluster().