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There are Questions & there are Questions

Descriptive

Do PR systems redistribute more than FPTP systems?

How popular has been Angela Merkel’s decision to
accept 1m refugees in Germany?

Who votes for the radical right?

Explanatory (from Y to X (s))

Why do PR systems redistribute more than FPTP systems?

Why are Americans less healthy than Canadians even
if they spend a higher portion of their GDP on health?

Why did the Russian Revolution happen in Russia
and not in Britain?

Causal (from X to Y )

What is the effect of the electoral system on redistribution?

What is the effect of polluted water on cholera?

What is the effect of democracy on economic development?
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Definitions

Causality

Refers to the relationship between events where one set of events (the effects) is a direct
consequence of another set of events (the causes). (Hidalgo & Sekhon 2012)

Causal Inference
The process by which one can use data to make claims about causal relationships.
(Hidalgo & Sekhon 2012)

Inferring causal relationships is a central task of science:

Examples

What is the effect of peace-keeping missions on peace?

What is the effect of class size on educational outcomes?

What is the effect of church attendance on social capital?

What is the effect of minimum wage on employment?

What is the effect of schooling on earnings?
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Establishing Criteria for Causal Inference

Some Background

Hume: An Inquiry into Human Understanding (1751)

Regularity Models:

Contiguity: Cause and effect must be contiguous in time and space

Succession: Cause prior to event)

Constant Conjunction: Constant union (association) between cause
and effect

How could we know a flame caused heat? Only by calling “to
mind their constant conjunction in all past instances. Without
further ceremony, we call the one cause and the other effect, and
infer the existence of one from that of the other.”
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Are then these relationships causal?
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Are then these relationships causal?

Best Picture 1991.
Presidential Election
1992:

Incumbent Lost

Best Picture 1999.
Presidential Election 2000:
Incumbent Lost

Best Picture 2007.
Presidential Election 2008:

Incumbent Lost
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A Counterfactual Logic

Background

John Stuart Mill: A System of Logic (1843)

A series of “canons” for inductive inference. Main addition:
“No plausible alternative explanation of the effect under study.”
Logic leading to the two well-known methods of comparison
(he came up with more than two):

Method of Difference: Units similar in all respects but one
manipulable treatment. Units differ in their outcomes.

(Method of Indifference: Units dissimilar in all respects
but one. Outcome same in both units.)
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Mill’s Methods

1	

Method of agreement ! Method of difference !
Case A Case B

Outcome

Potential 
causes

The 

cause!

A B

Outcome

Potential 
causes

The 

cause!

(i)

(ii)

(iii)

(iv)

(v)

Suppose all of the potential causes can be enumerated and accurately measured. Then 
these two methods will under certain conditions tell us the cause of an outcome:

Causal inference from just two cases!!!
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Mill & the Counterfactual Logic of Causality

Causal Inference as a counterfactual Problem

Rather than defining causality purely in reference to observable events,
counterfactual models define causation in terms of a comparison of
observable and unobservable events.

We need to construct counterfactuals of the observed world as
comparison units (Method of Difference).

In England, westerly winds blow during about twice as great a portion of the

year as easterly. If, therefore, it rains only twice as often with a westerly as

with an easterly wind, we have no reason to infer that any law of nature is

concerned in the coincidence. If it rains more than twice as often, we may be

sure that some law is concerned; either there is some cause in nature which,

in this climate, tends to produce both rain and a westerly wind, or a westerly

wind has itself some tendency to produce rain.

H : P(rain|westerly wind,W ) > P(rain|not westerly wind,W )

The problem lies in W. To see this, we need a proper framework of causal
inference.

(Mill 1873:347-7)
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Putting Mill into Context

X (Years of Schooling) Y (Earnings)

24 CHAPTER 3. MAKING REGRESSION MAKE SENSE

interest before we can use data to study them.
1

Figure 3.1.1 plots the CEF of log weekly wages given schooling for a sample of middle-aged white men

from the 1980 Census. The distribution of earnings is also plotted for a few key values: 4, 8, 12, and 16 years

of schooling. The CEF in the Ögure captures the fact thatóthe enormous variation individual circumstances

notwithstandingópeople with more schooling generally earn more, on average. The average earnings gain

associated with a year of schooling is typically about 10 percent.

Figure 3.1.1: Raw data and the CEF of average log weekly wages given schooling. The sample includes

white men aged 40-49 in the 1980 IPUMS 5 percent Öle.

An important complement to the CEF is the law of iterated expectations. This law says that an

unconditional expectation can be written as the population average of the CEF. In other words

E [yi] = EfE [yijXi]g; (3.1.1)

where the outer expectation uses the distribution of Xi. Here is proof of the law of iterated expectations

for continuously distributed (Xi;yi) with joint density fxy (u; t), where fy (tjXi = x) is the conditional

1Examples of pedagogical writing using the ìpopulation-Örstî approach to econometrics include Chamberlain (1984), Gold-

berger (1991), and Manski (1991).
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The Conditional Expectation Function I

Our first aim is to summarize the relationship between X & Y . To do that we find the
average wage for each educational category.
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1Examples of pedagogical writing using the ìpopulation-Örstî approach to econometrics include Chamberlain (1984), Gold-

berger (1991), and Manski (1991).

Why are we interested in the mean?
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The Conditional Expectation Function II
Connecting the dots, we have our summary of the conditional expectation
of Y , given X . We can repeat this for all education categories.
We can succinctly write this as follows: E (Y |X ).
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A Pause for Notation
Informally, E stands for best guess.

I This translates into the population average and is known as the
Expectation of Y :

Definition of Expectations

Let Yi denote a random variable, which takes values across observations
i = 1, . . . ,N. E [Yi ] is the population average of this variable. Two
examples:

I If Yi is generated by a random process (e.g. rolling a die), E [Yi ] is the
average in infinitely many repetitions of this process.

I If Yi comes from a survey (as in this case), E [Yi ] is the average obtained if
everyone in the population from which the sample is drawn is enumerated.

I The expectation of Y given . . . ?
I ... given X .
I This is denoted by the symbol “|′′.

Taken altogether, the notation can be read as: E (Y |X = x): The
Conditional Expectation of Y given the value of X .
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The Linear Equation

The easiest, most parsimonious although not always most adequate, way
to summarize the conditional expectation of Y , given X , is to assume a
common slope: a straight line: E (Y |X ) = β0 + β1X .

So, collecting our own data or using data others have already
collected, we fit a model of the following generic form:

Yi = β0 + β1Xi + ui
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The Regression Prophecy
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Think of Y as Salary and X as years or schooling. What we are
interested in is β1. We would like to interpret this coefficient as the
average change produced in individuals’ wages by one more year of
schooling.
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The Key OLS (or any other regression) Assumption

OLS estimation and inference requires various assumptions but we are
interested in one of them here. The one that would allow us to interpret
β1 as the average causal effect of education on economic well-being.

The zero-mean assumption

The error term, ui , is centered around the same value (trivially 0) across
all values of X : The explanatory variable (our regressor) and the error
term are independent.

Any ideas whether this assumption is likely to hold in our example?
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The selection Problem

X (Years of Schooling) Y (Earnings)

Z (Parental SES)

For the moment the way to construct counterfactuals is to think
about Z ′s and add them into the equation. But we only include
what we can observe. One example:

This is the selection problem, also known as:
unobserved heterogeneity, omitted variable
bias, spurious correlation, or endogeneity.
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Addressing The Problem: Two Approaches

Model-Based Approaches

Multiple Regression Analysis (adding X’s in a regression framework)

SEMs & Cross-Lagged Models

Model-Free Approaches

Conditioning on Observables:

I Matching

Without Conditioning On Observables:

I Randomized Experiments

I Design-based methods that approach the experimental ideal
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Addressing The Problem: Two Approaches

Model-Based Approaches

Covariate Adjustment in a Regression Framework

SEMs & Cross-Lagged Models

Model-Free Approaches

Conditioning on Observables:

I Matching

Without Conditioning On Observables:

I Randomized Experiments

I Design-based methods that approach the experimental ideal
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The Importance of Design

How to address it: Before collecting the data

We use conditional probabilities to learn about counterfactuals of interest –

e.g. would Jane have voted if someone from the campaign had not gone to

her home to encourage her to do so? One has to be careful to establish the

relationship between the counterfactuals of interest and the conditional

probabilities one has managed to estimate. Researchers too often forget that

this relationship must be established by design and instead rely upon

statistical models whose assumptions are almost never defended. Without an

experiment, natural experiment, a discontinuity, or some other strong design,

no amount of econometric or statistical modeling can make the move from

correlation to causation persuasive. This conclusion has implications for the

kind of causal questions we are able to answer with some rigor. Clear,

manipulable treatments and rigorous designs are essential.

(Sekhon, 2008:272)
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Motivation

A turn into design-based identification strategies

Like a fashion trend traveling from New York to the heartland,
soul-searching about causality has made its way from empirical
research in economics to that in political science with the usual
lag. Gone are the days when it is enough to have a nice theory, a
conditional correlation and some rhetoric about the implausibility
of competing explanations while implying but assiduously
avoiding the ‘c’ word. Editors, reviewers, and search committees
are beginning to look for more explicit and careful empirical
treatments of causality . . .

(Rodden 2007:1)
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Motivation

A turn into design-based identification strategies

. . . researchers are expected to lay out a set of possible outcomes,
or counterfactuals, generated by a set of determinants, and
demonstrate that holding all possible determinants except one at
a constant level, the manipulation of that determinants is
associated with a specific change in outcome, which can be
deemed a causal effect.

(Rodden 2007:1)
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The Potential Outcomes framework
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Tom’s Dilemma

Take an Aspirin or Not? → Headache

Do a Master’s Degree or try to get a job? → Salary in ten-years time
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Carthenia’s Dilemma

Presidential or Parliamentary? → Democratic Survival

FPTP or PR? → Redistribution

Bicameral or Unicameral? → Law production
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The Intuition 1

The Starting Point

Causality is tied to an action, which you can call it also manipulation,
treatment, intervention. This action is applied to a unit. Time is divided
into what exists before and what is observed after this action. This means
that we have a pair of units and time periods:

Tom

Tom × Before the Aspirin

Tom × After the Aspirin

Carthenia

Carthenia × Before the electoral reform

Carthenia × After the electoral reform
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The Intuition 2

A Conventional Restriction

We typically focus on two actions, although everything we discuss can be
generalized to more actions. Typically, these two actions are distinguished
in the following way:

Do A vs Not − A

Do A vs B

More often than not, A is a more active treatment (take an Aspirin) and B
(or not-A) is a more passive one (not taking an aspirin).

Counterfactual Logic

Only one action can be actually taken. But both of them are in principle
equally likely. So, we can forget for the moment which one was actually
taken and start thinking how the world/Tom/Carthenia would look like
after either A or Not − A(B).
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Potential Outcomes

For each action, there is a corresponding outcome:

How is Tom’s headache with and without having previously taken an
aspirin?

How much does Carthenia redistribute with an FPTP vs a PR system?

Of course, Tom can only do one of the two things: either take or not take
an aspirin. Similarly for Carthenia.

Given two actions, there are two corresponding Potential Outcomes

Call them Y1 & Y0.

Y1: The potential outcome realised if having taken the treatment
(e.g. aspirin).

Y0: The potential outcome realised if not having taken the treatment
(e.g. aspirin).
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Defining a Causal Effect

A causal effect stems from a causal question:

What’s the effect of the aspirin on Tom’s headache?

What’s the effect of PR on Carthenia’s redistribution levels?

Given the potential outcomes, the answer is straightforward:

Compare Tom’s headache had he taken the apirin and had he not
taken the aspiring: Y1 − Y0.

Compare Carthenia’s level of redistribution having Carthenia used a
PR system and having Carthenia used a different electoral system:
Y1 − Y0.

Causal Effect

For each Tom/Carthenia: τ = Y1,Tom/Carthenia − Y0,Tom/Carthenia
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Defining Causal Effects with Potential Outcomes

The definition depends only on the potential outcomes, not on which
of these is actually realized. We remain agnostic about whether A or
B is realized.

The causal effect comes from a comparison of the same unit in the
same time point, after the action (either A or B) has been realized.

What we do not Do then:

Compare Tom’s before and after the headache.

Compare Carthenia’s redistribution levels with a country using a
different electoral system, say Erstland.

The Problem

We cannot, of course, observe Tom both having and not having taken the
aspirin. We cannot compare Carthenia under the same conditions and in
the same time point having and not having used a PR system.
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Or maybe we can?

The take-home point

For the estimation of causal effects, we will need to make different
comparisons from the comparison made for their definitions.

We now turn into a more formal exposition of the counterfactual
framework.
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The Counterfactual Model

The Underlying Logic

Causal inference as a missing data problem

The framework applies in either quantitative or qualitative studies

The Ingredients

Well-defined causal states to which all members of the population of
interest could be exposed

Intellectual Background

Fisher (designing experiments), and most importantly Neyman 1923;
Rubin 1974: The Neyman-Rubin model
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Defining the Potential Outcomes

Definition: Treatment

Di : Indicator of treatment status for unit i

Di =

{
1 if unit i received the treatment
0 otherwise.

Definition: Observed Outcome

Yi : Observed outcome variable of interest for unit i. (Realized after the
treatment has been assigned)

Definition: Potential Outcomes

Y0i and Y1i : Potential Outcomes for unit i

Ydi =

{
Y1i Potential outcome for unit i with treatment
Y0i Potential outcome for unit i without treatment
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Causality with Potential Outcomes

Definition: Causal Effect

Causal Effect of the treatment on the outcome for unit i is the difference
between its two potential outcomes:

τi = Y1i − Y0i

Could be the ratio (Y1i
Y0i

) or any other function of Y1i & Y0i , but we are predominantly

interested in the difference between the two causal states because we assume linear

individual-level effects.
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The Fundamental Problem of Causal Inference

Definition (Holland, 1986)

It is impossible to observe for the same unit i the values Di = 1 and
Di = 0 as well as the values Y1i and Y0i and, therefore, it is impossible to
observe the effect of D on Y for unit i .

This is why we call this a missing data problem. We cannot observe both
potential outcomes, hence we cannot estimate:

τi = Y1i − Y0i

Y1i Y0i

Treatment Group (D = 1) Observable as Y Counterfactual
Control Group (D = 0) Counterfactual Observable as Y
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The Fundamental Problem of Causal Inference

This is why we call this a missing data problem. We cannot observe both
potential outcomes, hence we cannot estimate:

τi = Y1i − Y0i

Y1i Y0i

Treatment Group (D = 1) Observable as Y Counterfactual
Control Group (D = 0) Counterfactual Observable as Y

Holland revisited
Individuals contribute outcome information only for the treatment state in which
they are observed. Realized outcomes contain only a portion of the information
we need to directly calculate causal effects for all units.
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Heterogeneity in Treatment Effects

Problem

Causal inference is difficult because it involves missing data. How can we
find τ = Y1i − Y0i?

A large amount of homogeneity could solve this problem:
I (Y1i ,Y0i ) constant across individuals
I (Y1i ,Y0i ) constant across time

Unfortunately, often there is a large degree of heterogeneity in the
individual responses to treatments in the social sciences.
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From Potential Outcomes to Observed Outcomes

Realized
Outcome
Yi

Yi = DiY1i +(1−Di )Y0i

Di = 1

Di = 0

Yi = Y1i ie. we ob-
serve outcome un-
der treatment

Yi = Y0i ie. we ob-
serve outcome un-
der control

Question

Is there any assumption hidden here?
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Stable Unit Treatment Value Assumption (SUTVA)

An Assumption

The Observed outcome for each unit is realized as:

Yi = Di · Y1i + (1− Di )Y0i so Yi =

{
Y1i if Di = 1
Y0i if Di = 0

This is SUTVA. It implies that potential outcomes for unit i are unaffected
by treatment assignment for unit j

Rules out inteference among units:
I Speed Boarding on flight satisfaction or any situation in which

treatment becomes less effective when more units take it.

Definition: Rubin 1985

SUTVA is simply the a priori asumption that the value of Y for unit u
when exposed to treatment t will be the same no matter what mechanism
is used to assign treatment t to unit u and no matter what treatments the
other units receive.
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Explosion of Potential Outcomes (SUTVA)

Let D = Di ,Dj be a vector of treatment assignments for two units, i
(“Noah”) and j (“Maria”). How many elements in d?

D = {(Di = 0,Dj = 0), (Di = 1,Dj = 0), (Di = 0,Dj = 1), (Di = 1,Dj = 1)}

How many potential outcomes for unit i?

Y1i (D) =

{
Y1i (1, 1)
Y0i (1, 0)

Y0i (D) =

{
Y0i (0, 1)
Y0i (0, 0)

τi (D) =



Y1i (1, 1)− Y0i (0, 0)
Y1i (1, 1)− Y0i (0, 1)
Y1i (1, 0)− Y0i (0, 0)
Y0i (1, 0)− Y0i (0, 1)
Y1i (1, 1)− Y1i (1, 0)
Y0i (0, 1)− Y0i (0, 0)
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Explosion of Potential Outcomes (SUTVA)

Let D = Di ,Dj be a vector of treatment assignments for two units, i
(“Noah”) and j (“Maria”). How many elements in d?

D = {(Di = 0,Dj = 0), (Di = 1,Dj = 0), (Di = 0,Dj = 1), (Di = 1,Dj = 1)}

How many potential outcomes for unit i?

Y1i (D) =

{
Y1i (1, 1)
Y0i (1, 0)

Y0i (D) =

{
Y0i (0, 1)
Y0i (0, 0)

SUTVA implies Y1i (1, 1) = Y1i (1, 0) and Y0i (0, 1) = Y0i (0, 0) and allows
us to define the effect for unit i τi = Y1i − Y0i independent of the
treatment assignment process itself.

SUTVA is an exclusion restrictions. We rely on outside information to rule
out the possibility of certain causal effects (eg. your taking the treatment
has no effect on my outcome). Causal inference is impossible without such
exclusion restrictions.
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Quantities of Interest
Definition ATE
Average Treatment Effect:

τATE = E [Y1 − Y0]

Definition ATT
Average Treatment Effect of the Treated:

τATT = E [Y1 − Y0|D = 1]

Definition ATC
Average Treatment Effect of the Controls:

τATC = E [Y1 − Y0|D = 0]

These effects can be extended to specific population subgroups:

τATE = E [Y1 − Y0|X = x ] τATT = E [Y1 − Y0|D = 1,X = x ]

τATC = E [Y1 − Y0|D = 0,X = x ]
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Interpretation of Treatment Effects

Think of the following example: The effect of Medicaid on Americans’
health status.
ATE

The effect of Medicaid on the health status of the average
American. How would Americans’ health look like had there be no
Affordable Care Act?

ATT

The effect of the Medicaid on the health status for those who are
actually enrolled. Would those who subscribed to Medicaid have a
better or a worse health condition if they had not subscribed?

ATC

The effect of the Medicaid on the health status for those who are
not enrolled. Would those who have not subscribed to Medicaid

have a better or a worse health condition if they had subscribed?
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An Example: ATE

Imagine a population of 4 units:

i Yi Di Y1i Y0i τATE

1 3 1 ? ? ?
2 1 1 ? ? ?
3 0 0 ? ? ?
4 1 0 ? ? ?

What is the ATE?

τATE = E [Y1i − Y0i ]
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An Example: ATE

Imagine a population of 4 units:

i Yi Di Y1i Y0i τATE

1 3 1 3 ? ?
2 1 1 1 ? ?
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An Example: ATE

Imagine a population of 4 units:

i Yi Di Y1i Y0i τATE

1 3 1 3 0 ?
2 1 1 1 1 ?
3 0 0 1 0 ?
4 1 0 1 1 ?

What is the ATE?

τATE = E [Y1i − Y0i ]
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An Example: ATE

Imagine a population of 4 units:

i Yi Di Y1i Y0i τATE

1 3 1 3 0 3
2 1 1 1 1 0
3 0 0 1 0 1
4 1 0 1 1 0

What is the ATE?

τATE = E [Y1i − Y0i ]
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An Example: ATE

Imagine a population of 4 units:

i Yi Di Y1i Y0i τATE

1 3 1 3 0 3
2 1 1 1 1 0
3 0 0 1 0 1
4 1 0 1 1 0

E [Y1] 1.5
E [Y0] 0.5

E [Y1 − Y0] 1

τATE = E [Y1i − Y0i ] = 1/4 · (3 + 0 + 1 + 0) = 1
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An Example: ATT

Imagine a population of 4 units:

i Yi Di Y1i Y0i τATT

1 3 1 3 0 3
2 1 1 1 1 0
3 0 0 1 0 1
4 1 0 1 1 0

What is the ATT?

τATT = E [Y1i − Y0i |D = 1]
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An Example: ATT

Imagine a population of 4 units:

i Yi Di Y1i Y0i τATE

1 3 1 3 0 3
2 1 1 1 1 0

E [Y1|D = 1] 2
E [Y0|D = 1] 0.5

E [Y1 − Y0|D = 1] 1.5

τATE = E [Y1i − Y0i |D = 1] = 1/2 · (3 + 0) = 1.5

An Exercise for you: Try to estimate the ATC.
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Selection Bias

The Problem

Now let’s reconsider the fundamental problem of causal inference.

We only observe Y1i if D = 1 and Y0i if D = 0.

So, the only thing we can do is compare the observed outcomes:
E [Yi |D = 1]− E [Yi |D = 0].

Is that of any use? Does this represent any quantity of interest thus
far?

Definition: Selection Bias

E [Yi |D = 1]− E [Yi |D = 0]︸ ︷︷ ︸
Observed Differences in Outcome

= E [Y1i |D = 1]− E [Y0i |D = 1]︸ ︷︷ ︸
Average Treatment Effect of the Treated

+E [Y0i |D = 1]− E [Y0i |D = 0]︸ ︷︷ ︸
Selection Bias
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Selection Bias

What this means

It is unlikely that the last two terms will sum to zero in the previous
equation

Selection into treatment is associated with the potential outcomes

An Example: Selection Bias

Church attendance is often found to be correlated with turnout. Does this
mean it induces turnout? Church goers differ in various respects from
people who do not attend religious ceremonies, etc they have higher sense
of civic duty. Thus, turnout for them would already be higher than for
non-church goers even if individuals who attend religious ceremonies did
not do so.

E [Y0i |D = 1]− E [Y0i |D = 0] > 0
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Selection Bias: An Exercise

Observing treated and untreated units

Do hospitals make us healthier?

Do economic perceptions predict vote choice?

Does perceive efficiency in government predict voter preferences?

Do job training programs help the disadvantaged?

A common pattern: The problem lies in the baseline status. Under no
treatment, some units would be already more likely to register the outcome
of interest than others. They select themselves into the treatment.
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Selection Bias in a Regression Framework
Remember the assumption about how potential outcomes are linked to treatment status:

Yi = Di · Y1i + (1− Di )Y0i

easily rewritten as:
Yi = Y0i + Di · (Y1i − Y0i )

The expression is useful because remember: τi = Y1i − Y0i . Now, assume that the
treatment effect is constant for all i , so that: τ = Y1i −Y0i is a constant. With constant
treatment effects, we can rewrite this equation as:

Yi = α︸︷︷︸
E(Y0i )

+ τ︸︷︷︸
Y1i−Y0i

Di + ui︸︷︷︸
Y0i−E(Y0i )

Evaluating the conditional expectation of this equation with treatment switched off and
on: E [Yi |D = 1] = α + τ + E [ui |D = 1]

E [Yi |D = 0] = α + E [ui |D = 0]

So that:
E [Yi |D = 1]− E [Yi |D = 0] = τ︸︷︷︸

ATE

+

E [ui |Di = 1]− E [ui |Di = 0]︸ ︷︷ ︸
selection bias
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Selection Bias in a Regression Framework
Remember the assumption about how potential outcomes are linked to treatment status:

Yi = Di · Y1i + (1− Di )Y0i

It can be easily rewritten as:

Yi = Y0i + Di · (Y1i − Y0i )

The expression is useful because remember: τi = Y1i − Y0i . Now, assume that the
treatment effect is constant for all i , so that: τ = Y1i −Y0i is a constant. With constant
treatment effects, we can rewrite this equation as:

Yi = α︸︷︷︸
E(Y0i )

+ τ︸︷︷︸
Y1i−Y0i

Di + ui︸︷︷︸
Y0i−E(Y0i )

Evaluating the conditional expectation of this equation with treatment switched off and
on: E [Yi |D = 1] = α + τ + E [ui |D = 1]

E [Yi |D = 0] = α + E [ui |D = 0]

So that:
E [Yi |D = 1]− E [Yi |D = 0] = τ︸︷︷︸

ATE

+

E [ui |Di = 1]− E [ui |Di = 0]︸ ︷︷ ︸
selection bias

Selection bias = violation of
conditional mean assumption
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Selection Bias in a Regression Framework
Remember the assumption about how potential outcomes are linked to treatment status:

Yi = Di · Y1i + (1− Di )Y0i

It can be easily rewritten as:

Yi = Y0i + Di · (Y1i − Y0i )

The expression is useful because remember: τi = Y1i − Y0i . Now, assume that the
treatment effect is constant for all i , so that: τ = Y1i −Y0i is a constant. With constant
treatment effects, we can rewrite this equation as:

Yi = α︸︷︷︸
E(Y0i )

+ τ︸︷︷︸
Y1i−Y0i

Di + ui︸︷︷︸
Y0i−E(Y0i )

Evaluating the conditional expectation of this equation with treatment switched off and
on: E [Yi |D = 1] = α + τ + E [ui |D = 1]

E [Yi |D = 0] = α + E [ui |D = 0]

So that:
E [Yi |D = 1]− E [Yi |D = 0] = τ︸︷︷︸

ATE

+

E [ui |Di = 1]− E [ui |Di = 0]︸ ︷︷ ︸
selection bias

Selection bias = correlation of
regressor with the error term
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Selection Bias in a Regression Framework

Since ui = Y0i − E (Y0i ), we can rewritte the last equation as:

E [ui |Di = 1]− E [ui |Di = 0] = E [Y0i |Di = 1]− E [Y0i |Di = 0]

This correlation reflects the difference in the baseline: the fact that
potential outcomes differ between treated and untreated units in their
no-treatment condition.

To see what this means think about the hospital example.

This is why we call this problem selection bias.
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The Assignment Mechanism

How to proceed: Focus on the assignment mechanism

Definition: The Assignment Mechanism

Assignment mechanism is the procedure that determines which units are
selected into the treatment. The following mechanisms are available,
arranged from more to less satisactory:

Random Assignment

Selection on Observables

Selection on Unobservables
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The Assignment Mechanism

How to proceed: Focus on the assignment mechanism

Definition: The Assignment Mechanism

Assignment mechanism is the procedure that determines which units are
selected into the treatment. The following mechanisms are available,
arranged from more to less satisactory:

Random Assignment
I We have manipulated who gets the treatment.

Selection on Observables
I Selection into the treatment disappears once we take into account

some factors that we think may be relevant.

Selection on Unobservables
I We do not know how units ended up treated or untreated.
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The Experimental Ideal

Random Assignment solves the selection problem.

This is our problem:

E [Y0i |D = 1]− E [Y0i |D = 0] 6= 0

Think how experiments work: you assign some subjects to some stimulus
A and some other subjects to no stimulus or some other stimulus B. You
use no information in creating the groups: you remain agnostic about the
assingment process –How is that possible?

Why is this so useful?

Does it remind you of some other process?
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Randomization

Intuition: Similar to the idea of Random Sampling
Imagine you have a population of interest. You can draw as many samples
from this population as you want. Each one would converge to the
population average. So, you can treat them as exchangeable.
Take two samples, J and K , from the same population. Given random
sampling properties:

E [Y0i |i ∈ J] = E [Y0i |i ∈ K ] = E [Y0i ]

Now, replace J with C = Control and K with T = Treatment:

E [Y0i |i ∈ C ] = E [Y0i |i ∈ T ] = E [Y0i ]

Now, take again our term of selection bias:

E [Y0i |D = 1]− E [Y0i |D = 0] = E [Y0i |i ∈ T ]− E [Y0i |i ∈ C ] = 0
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Experimental vs Observational Studies

Definition: Experimental Study

An experimental study is an empiric investigation of the effects of
exposure to different treatment regimes, in which the investigator can
control the assignment of treatment to subjects.

When researchers are in control of the assignment mechanism, they
do so by employing random assignment.

This means that control and treatment units are exchangeable
I We can substitute any unit i from the treatment group with any unit j

from the control group without fearing a change in the outcome of
interest. All that matters is treatment intake:
E [Yij |Di = 1] = E [Yij |Di = 0] = E [Yij |Di = j ]

This amounts to independence between potential outcomes and
treatment assignment: Y1i ,Y0i ⊥ Di
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Does Vitamin C reduce risk of Asthma?Experiments vs. Observational Studies

Experiments vs. Observational Studies

Lancet 2001: negative correlation between coronary heart disease mortality
and level of vitamin C in bloodstream (controlling for age, gender, blood
pressure, diabetes, and smoking)

J. Hainmueller (MIT) 3 / 66

Observational Studies: Yes!

Randomized Trials with Placebo Controls: No!

Lancet 2003: comparing among individuals with the same age,
gender, blood pressure, diabetes, and smoking, those with higher
vitamin C levels have lower levels of obesity, lower levels of alcohol
consumption, are less likely to grow up in working class, etc.
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Experimental vs Observational Studies

Definition: Observational Study

An observational study is an empiric investigation of the effects of
exposure to different treatment regimes, in which the investigator cannot
control the assignment of treatment to subjects.

This means that control and treatment units are not automatically
exchangeable.

I Does this mean we can only work with experimental data?

Of course Not. This is why we add controls to our regression models.
To adjust for the observed covariates.

I What about the unobservables?

Well, we hope they are also balanced.
I - Is that all?

No.
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Causal Inference with Observational Studies

The planner of an observational study should always ask himself: How would
the study be conducted if it were possible to do it by controlled
experimentation.

The main issue here is to make treatment intake as independent as possible to
potential outcomes.

Doing so, ideally, would allow you to draw causal inferences without assuming that
the treatment intake has been decided only on the basis of the observables.

Three (plus one) ways to approach the experimental ideal.

Find an instance in which the treatment has been assigned in a haphazard way

that is as good as randomly assigned: Instrumental Variables.

Find instance where the treatment assignment process is determined or affected by
a known but not easily manipulable threshold: Regression Discontinuity Design

Use time creatively: Difference-in-Differences

Assuming Comparability based on Observables

Find an instance in which treatment assignment depends on a set of observable
covariates: Matching

(Cochran 1965)
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The Good, the Bad & the Ugly

Treatments, Covariates, Outcomes

Randomized Experiment: Well-defined treatment, clear distinction
between covariates and outcomes

Well-Designed Observational Study: Treatments are well-defined,
control status is also well defined, clear distinction between covariates
and outcomes.

Poorer Observational Study: Hard to say when treatment began or
what the treatment really is. Distinction between covariates and
outcomes is blurred, so problems that arise in experiments seem to be
avoided but are in fact just ignored
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From Neyman to Rubin

We can only learn
from experiments

Observational
Research

Emphasis on
the Design
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Matching
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Definitions

Covariates

A covariate is a variable that is predetermined with respect to treatment
Di : X0 = X1, i.e. its value does not depend on the value of Di .

Does not imply that X and D are independent

Predetermined variables are often time invariant (sex, race, etc.), but
time invariance is not necessary

Outcomes

Those variables,Y , that are (possibly) not predetermined are called
outcomes (for some individual i , Y0,i 6= Y1i )

In general, one should not condition on outcomes, because this may induce
post-treatment bias.
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Methods of Assignment

Three Main Properties:

Individualistic: Whether unit i receives treatment is only dependent
upon Xi ; it is not dependent upon Xj , where X denotes pre-treatment
characteristics of units.

Probabilistic: No unit is a priori excluded from taking the treatment:
Probability of being treated is strictly between zero and one for all
units.

Unconfoundedness: The treatment is free from the potential
outcomes: P(Di = 1) ⊥ Y0,Y1

The first two assumptions are typically assumed to hold. The main focus
is on the third assumption: unconfoundedness.
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Removing Bias by Conditioning

We need to satisfy: P(Di = 1) ⊥ Y0,Y1

Experiments

Randomization ensures unconfoundedness without selection on
observables: P(Di = 1) ⊥ Y0,Y1 which translates into:

E (Y1|D = 1) = E (Y1|D = 0) &

E (Y0|D = 1) = E (Y0|D = 0)

Typical Observational Studies

Unconfoundedness can be assumed to hold only after conditioning on
a set of pre-treatment variables: P(Di = 1|Xi ) ⊥ Y0,Y1 which
translates into:

E (Y1|D = 1,X ) = E (Y1|D = 0,X ) &

E (Y0|D = 1,X ) = E (Y0|D = 0,X )
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Conditioning on Observables

Regression

Subclassification

Matching

Balancing

All studies have a common goal: to balance the distributions of
covariates for units which are treated and units untreated.

They differ in how they try to achieve balance. In some instances
estimation of causal effects happens (seemingly) simultaneously with
the attempt to maximise balance on the observables (e.g. regression).

In others, these two steps are clearly distinguished, with the design
stage being the first stage in which balance is attempted and
estimation follows after balance is achieved (e.g. matching).
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Conditioning on Observables

Regression

Subclassification

Matching

Balancing

All studies have a common goal: to balance the distributions of
covariates for units which are treated and units untreated.

They differ in how they try to achieve balance. In some instances
estimation of causal effects happens (seemingly) simultaneously with
the attempt to maximise balance on the observables (e.g. regression).

In others, these two steps are clearly distinguished, with the design
stage being the stage in which balance is attempted and estimation
follows after balance is achieved (e.g. matching).
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A Quick Example about Sub-classification

Removing Bias by Conditioning

Smoking and Mortality (Cochran (1968))

Table 1

Death Rates per 1,000 Person-Years

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 20.5 14.1 13.5
Cigars/pipes 35.5 20.7 17.4

J. Hainmueller (MIT) 20 / 66

(Cochran 1968)
Is Pipe smoking more hazardous than cigarette smoking?
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A Quick Example about Sub-classification

Removing Bias by Conditioning

Smoking and Mortality (Cochran (1968))

Table 2

Mean Ages, Years

Smoking group Canada U.K. U.S.

Non-smokers 54.9 49.1 57.0
Cigarettes 50.5 49.8 53.2
Cigars/pipes 65.9 55.7 59.7

J. Hainmueller (MIT) 21 / 66

(Cochran 1968)

Is Pipe smoking more hazardous than cigarette smoking?
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A Quick Example about Sub-classification

To control for differences in age, we would like to compare different
smoking-habit groups with the same age distribution.

How can we do this?
— One solution is subclassification:

How does it work

for each country, divide each group into different age subgroups

calculate death rates within age subgroups

average within age subgroup death rates using fixed weights (eg.
number of cigarette smokers)
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A Quick Example about Sub-classification

Adjust death rates by age:

Removing Bias by Conditioning

Subclassification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

Question

What is the average death rate for Pipe Smokers?

J. Hainmueller (MIT) 23 / 66
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A Quick Example about Sub-classification
Adjust death rates by age:

Removing Bias by Conditioning

Subclassification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

Question

What is the average death rate for Pipe Smokers?

J. Hainmueller (MIT) 23 / 66

Question

What is the average death rate for pipe smokers?

Answer

15× (11/40) + 35× (13/40) + 50× (16/40) = 35.5
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A Quick Example about Sub-classification
Adjust death rates by age:

Removing Bias by Conditioning

Subclassification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

Question

What is the average death rate for Pipe Smokers?

J. Hainmueller (MIT) 23 / 66

Question

What is the average death rate for pipe smokers if they had the same age
distribution as Non-smokers?

Answer

15× (29/40) + 35× (9/40) + 50× (2/40) = 21.2
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A Quick Example about Sub-classification
Adjust death rates by age:

Removing Bias by Conditioning

Smoking and Mortality (Cochran (1968))

Table 3

Adjusted Death Rates using 3 Age groups

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 28.3 12.8 17.7
Cigars/pipes 21.2 12.0 14.2

J. Hainmueller (MIT) 24 / 66

Problem

The Curse of Dimensionality: We will see this later as well but as you
add covariates, number of cells increases exponentially, hence empty
cells.
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Matching

The Underlying Logic

Think of matching as a way to address the missing data problem, by
“imputing” missing observations for potential outcomes, using observed
outcomes from units chosen on the basis of information about a set of
X ′s, which—we believe—drive subjects into their treatment status.

So, if X denotes a set of pre-treatment characteristics for subjects,
matching is based on the following assumption:

Unconfoundedness

Y1,Y0 ⊥ D|X , which is equivalent to saying that:

within each cell defined by X treatment is random;

the selection into treatment depends on observables X up to a
random factor.
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Matching: A Running Example

MPs for Sale?

“We are not supposed to be an assembly of gentlemen who
have no interests of any kind and no association of any kind.
That is ridiculous. That may apply in Heaven, but not, happily,
here.”

— Winston Churchill
in the House of Commons in 1947

Research Question

What is the effect of serving in Parliament on politicians’ wealth?
(Eggers & Hainmueller, 2009)
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The Set Up

Definition: Treatment

Di : Indicator of treatment status for politician i

Di =

{
1 if i was elected into Parliament
0 if i was not elected into Parliament.

Definition: Observed Outcome

Yi : Observed wealth at death for politician i

Definition: Potential Outcomes

Y0i and Y1i : Potential Outcomes for politician i

Ydi =

{
Y1i Potential wealth for i if i was elected in Parliament
Y0i Potential wealth for i if i was not elected in Parliament
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What we Observe

An Example with 10 candidates:

Won?

Candidate 1 Yes
Candidate 2 Yes
Candidate 3 No
Candidate 4 No
Candidate 5 No
Candidate 6 Yes
Candidate 7 No
Candidate 8 No
Candidate 9 Yes
Candidate 10 Yes
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What we Observe

An Example with 10 candidates:

Won?

Candidate 1 Yes
Candidate 2 Yes
Candidate 3 No
Candidate 4 No
Candidate 5 No
Candidate 6 Yes
Candidate 7 No
Candidate 8 No
Candidate 9 Yes
Candidate 10 Yes
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What we Observe

An Example with 10 candidates:

Di

Candidate 1 1
Candidate 2 1
Candidate 3 0
Candidate 4 0
Candidate 5 0
Candidate 6 1
Candidate 7 0
Candidate 8 0
Candidate 9 1
Candidate 10 1
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What we Observe

An Example with 10
candidates:

Di

Candidate 1 1
Candidate 2 1
Candidate 3 0
Candidate 4 0
Candidate 5 0
Candidate 6 1
Candidate 7 0
Candidate 8 0
Candidate 9 1
Candidate 10 1

Quantities of Interest

E (Y1i − Y0i ) — (ATE )
E (Y1i − Y0i |D = 1) — (ATT )
E (Y1i − Y0i |D = 0) — (ATC )

What do we Observe?
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E (Y1i |D = 1)− E (Y0i |D = 0)

(Eggers & Hainmueller 2009)

Back to the Problem
E(Y1i |D = 1)− E(Y0i |D = 0) leads us to the problem of selection bias that we have
already seen.
Randomization would solve the problem, but you cannot randomize who gets elected
and who does not.
Instead, we try to find direct comparisons: matches for each treated unit.
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Exact Matching

An Example with 10 candidates:

Observed Outcome:
Di Male?

Wealth at Death

Candidate 1 855,557 1 1
Candidate 2 912,331 1 1
Candidate 3 566,271 0 1
Candidate 4 319,838 0 1
Candidate 5 612,233 0 0
Candidate 6 601,222 1 0
Candidate 7 485,709 0 1
Candidate 8 102,509 0 1
Candidate 9 991,511 1 1
Candidate 10 757,972 1 1

What do we do next?
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Step 1: Split Observations According to Covariate Values

Observed Outcome:
Di Male?

Wealth at Death

Candidate 1 855,557 1 1
Candidate 2 912,331 1 1
Candidate 3 566,271 0 1
Candidate 4 319,838 0 1
Candidate 7 485,709 0 1
Candidate 8 102,509 0 1
Candidate 9 991,511 1 1
Candidate 10 757,972 1 1

Observed Outcome:
Di Male?

Wealth at Death

Candidate 5 612,233 0 0
Candidate 6 601,222 1 0
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Step 2: Obtain Counterfactuals for Observed Outcome

Potential Outcome Potential Outcome Di Male?
Under Treatment Under Control

Candidate 1 855,557 ? 1 1
Candidate 2 912,331 ? 1 1
Candidate 9 991,511 ? 1 1
Candidate 10 757,972 ? 1 1

Candidate 3 ? 566,271 0 1
Candidate 4 ? 319,838 0 1
Candidate 7 ? 485,709 0 1
Candidate 8 ? 102,509 0 1

Potential Outcome Potential Outcome Di Male?
Under Treatment Under Control

Candidate 5 ? 612,233 0 0
Candidate 6 601,222 ? 1 0
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Step 2: Obtain Counterfactuals for Observed Outcome

Potential Outcome Potential Outcome Di Male?
Under Treatment Under Control

Candidate 1 855,557 ? 1 1
Candidate 2 912,331 ? 1 1
Candidate 9 991,511 ? 1 1
Candidate 10 757,972 ? 1 1

Candidate 3 ? 566,271 0 1
Candidate 4 ? 319,838 0 1
Candidate 7 ? 485,709 0 1
Candidate 8 ? 102,509 0 1

Potential Outcome Potential Outcome Di Male?
Under Treatment Under Control

Candidate 5 601,222 612,233 0 0
Candidate 6 601,222 612,233 1 0
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Imputing the Missing Outcomes

Potential Outcome Potential Outcome Di Male?
Under Treatment Under Control

Candidate 1 855,557

368581.75

1 1
Candidate 2 912,331 1 1
Candidate 9 991,511 1 1
Candidate 10 757,972 1 1

Candidate 3

879342.75

566,271 0 1
Candidate 4 319,838 0 1
Candidate 7 485,709 0 1
Candidate 8 102,509 0 1

Potential Outcome Potential Outcome Di Male?
Under Treatment Under Control

Candidate 5 601,222 612,233 0 0
Candidate 6 601,222 612,233 1 0
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Step 3: Estimate Treatment Effects

ATT

E [Y1i − Y0i |D = 1,X = 1] for each i = 1, 2, 9, 10 &

E [Y1,6 − Y0,6|D = 1,X = 0] &

And take weighted average

ATC

E [Y1i − Y0i |D = 0,X = 1] for each i = 3, 4, 7, 8 &

E [Y1,5 − Y0,5|D = 0,X = 0] &

And take the weighted average.

ATE

E [Y1i − Y0i |X = 1] for each i = 1, 2, 3, 4, 7, 8, 9, 10 &

E [Y1i − Y0i |X = 0] for each i = 5, 6 &

And take the weighted average.
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Exact Matching with a Continuous Variable?

Observed Outcome:
Di Age

Wealth at Death

Candidate 1 855,557 1 54
Candidate 2 912,331 1 28
Candidate 3 566,271 0 73
Candidate 4 319,838 0 79
Candidate 5 612,233 0 28
Candidate 6 601,222 1 65
Candidate 7 485,709 0 47
Candidate 8 102,509 0 54
Candidate 9 991,511 1 33
Candidate 10 757,972 1 40

What do we do next?
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Exact Matching with a Continuous Variable?

Potential Outcome Potential Outcome Di Age
Under Treatment Under Control

Candidate 1 855,557 ? 1 54
Candidate 2 912,331 ? 1 28
Candidate 6 601,222 ? 1 65
Candidate 9 991,511 ? 1 33
Candidate 10 757,972 ? 1 40

Candidate 3 ? 566,271 0 73
Candidate 4 ? 319,838 0 79
Candidate 5 ? 612,233 0 28
Candidate 7 ? 485,709 0 47
Candidate 8 ? 102,509 0 54
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Exact Matching

Potential Outcome Potential Outcome Di Age
Under Treatment Under Control

Candidate 1 855,557 102,509 1 54
Candidate 2 912,331 612,223 1 28
Candidate 6 601,222 566,271 1 65
Candidate 9 991,511 612,233 1 33
Candidate 10 757,972 612,233 1 40

Candidate 3 ? 566,271 0 73
Candidate 4 ? 319,838 0 79
Candidate 5 ? 612,233 0 28
Candidate 7 ? 485,709 0 47
Candidate 8 ? 102,509 0 54

Question

What is the ATT?
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Exact Matching
Potential Outcome Potential Outcome Di Age
Under Treatment Under Control

Candidate 1 855,557 102,509 1 54
Candidate 2 912,331 612,223 1 28
Candidate 6 601,222 566,271 1 65
Candidate 9 991,511 612,233 1 33
Candidate 10 757,972 612,233 1 40

Candidate 3 ? 566,271 0 73
Candidate 4 ? 319,838 0 79
Candidate 5 ? 612,233 0 28
Candidate 7 ? 485,709 0 47
Candidate 8 ? 102,509 0 54

Question
What is the ATT?

Answer
1/5× [(855, 557− 102, 509) + (912, 331− 612, 223) + (601, 222− 566, 271) +
(991, 511− 612, 233) + (757, 972− 612, 233)] = 322624.8
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Adding Covariates

Di Male? Oxbridge?

Candidate 1 1 1 0
Candidate 2 1 1 1
Candidate 3 0 1 0
Candidate 4 0 1 0
Candidate 5 0 0 0
Candidate 6 1 0 1
Candidate 7 0 1 0
Candidate 8 0 1 1
Candidate 9 1 1 1
Candidate 10 1 1 0
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Rearrange with respect to values of X1

Di Male? Oxbridge?

Candidate 1 1 1 0
Candidate 2 1 1 1
Candidate 3 0 1 0
Candidate 4 0 1 0
Candidate 7 0 1 0
Candidate 8 0 1 1
Candidate 9 1 1 1
Candidate 10 1 1 0

Di Male? Oxbridge?

Candidate 5 0 0 0
Candidate 6 1 0 1

Is there a match for Candidate 6?
Is Candidate 5 good enough for any match?
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So, we are left with:

Di Male? Oxbridge?

Candidate 1 1 1 0
Candidate 10 1 1 0

Candidate 3 0 1 0
Candidate 4 0 1 0
Candidate 7 0 1 0

Di Male? Oxbridge?

Candidate 2 1 1 1
Candidate 9 1 1 1

Candidate 8 0 1 1
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Adding More Covariates

Di Male? Oxbridge? Aristocrat?
Public

schooling?

Candidate 1 1 1 0 0 1
Candidate 2 1 1 1 1 1
Candidate 6 1 0 1 1 1
Candidate 9 1 1 1 1 1
Candidate 10 1 1 0 1 1
Candidate 3 0 1 0 0 0
Candidate 4 0 1 0 0 0
Candidate 5 0 0 0 0 0
Candidate 7 0 1 0 0 0
Candidate 8 0 1 1 0 1

What are we looking for?

Units differing in their Di values while in the same time:

Having the exact same values in all other columns (X ′s)

Any chance?
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Adding the Observed Outcome

Gross Wealth
Di Male? Oxbridge? Aristocrat?

Public
at Death schooling?

Candidate 1 855,557 1 1 0 0 1
Candidate 2 912,331 1 1 1 1 1
Candidate 6 601,222 1 0 1 1 1
Candidate 9 991,511 1 1 1 1 1
Candidate 10 757,972 1 1 0 1 1
Candidate 3 566,271 0 1 0 0 0
Candidate 4 319,838 0 1 0 0 0
Candidate 5 612,233 0 0 0 0 0
Candidate 7 485,709 0 1 0 0 0
Candidate 8 102,509 0 1 1 0 1

How would estimate the effect of Di using regression?

Wealthi = β0 +τMP+β1Male+β2Oxbridge+β3Aristocrat+β4PublicSchooling +ui

Would you get an estimate for τ?

Wealthi = 433816 + 857644MP + 82929Male + 104596Oxbridge −
97585Aristocrat − 518832PublicSchooling + ui

How would you interpret it? What does that tell you about regression?
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Lesson 1: Extrapolations

The “else equal” principle is often satisfied only through
extrapolations beyond the range of the available data.

Such extrapolations are in turn based on assumptions, which are
typically untestable and ‘invisible’ within the regression framework.

Matching, thus makes the stage of making units similar with regard
to covariates more transparent.

Imagine candidate 7 also went to a public school; thus, comparing
Candidate 1 and 7 would provide an estimate of ATE.

Even so, from n = 10 we would have gone down to n = 2.

Again this is also the case with regression: extrapolations require
attaching greater weight to most similar units.
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Lesson 2: Dimensionality

In the original study, there are more than 400 observations available.

Yes, but many more covariates are taken into account

As the number of covariates used to “match” units increases, it
becomes exponentially more difficult to find perfect matches.

Exact matching fails in finite samples if the dimensionality of X is
large: not enough information. Far too demanding for the vast
majority of research questions and data available.

With more than one continuous variable, it is also sub-optimal
(Abadie & Imbens, 2006).
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The Curse of Dimensionality
Identification under Selection on Observables Matching

Local Methods and the Curse of Dimensionality

Big Problem: in a mathematical space, the volume increases exponentially when adding extra
dimensions.

centered, p-dimensional unit ball, N points uniformly distributed. Median distance from origin

to closest point: d(p, N) = (1 � 1
2

1/N
)1/p . So d(10, 500) = .52.

J. Hainmueller (MIT) 39 / 66
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Matching in Multidimensional Space

“Else being similar”

With many X’s and typically also with continuous X’s, estimation of ATT
is based on the detection of the closest possible control unit to match
every treated unit:
τ̂ = 1

N1

∑
Di=1 (Yi − Yj(i))

where Yj(i) is the outcome of an untreated observation such that Xj(i) is
the closest value to Xi among the untreated observations.

Problem

How to decide which control is closest?

Defining Closensess

Think of it as a distance metric. Let Xi = (Xi1,Xi2, . . . ,Xik) and
Xj = (Xj1,Xj2, . . . ,Xjk) be covariate vectors for i and j . We want to find
ways to link rows according to their similarities in their values in each of
these vectors. This is done with distance metrics.
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Distance Metrics

A potentially useful distance metric:

Mahalanobis distance

MD(Xi ,Xj) =
√

(Xi − Xj)′Σ−1(Xi − Xj)
where Σ is the Variance-Covariance matrix. For an exact match,
MD(Xi ,Xj) = 0.

Appropriate distance measure if each covariate has an elliptic
distribution whose shape is common between treatment and control
groups (Mitchell and Krzanowski 1985, 1989).

In finite samples, Mahalanobis distance will not be optimal.

Other distance metrics can be used, e.g.

Stata’s nmatch uses a slightly different matrix.

Genetic matching uses a yet different metric.
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The Propensity Score

Another way to reduce dimensionality: match on the Propensity Score

Definition

The probabity to receive treatment (also known as the selection
probability) conditional on the set of pre-treatment covariates:
p(X ) = P(D = 1|X )

Identification Assumptions

1 (Y1,Y0) ⊥ D|X (Selection on Observables)

2 0 < Pr(D = 1|X ) < 1 (common support)

Propensity Score Properties

Balancing: Balancing of pre-treatment variables given the propensity score:
D ⊥ X |p(X )
Unconfoundedness: If Y1,Y0 ⊥ D|X , then Y1,Y0 ⊥ D|p(X ).
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How to Estimate the Propensity Score

Regress Di on the set of X ′s using a logit or probit function to
estimate the score.

Take the predicted values of Di . These predicted values represent the
probability of being assigned to treatment, given X (the Propensity
Score).

Choose closest control on p(Xi ) (Call this the Nearest Neighbor
(NN))

I For ATT, match every XTi with the nearest XCi

I For ATC, match every XCi with the nearest XTi

I For ATE, match every XTi with the nearest XCi & match all units with
the nearest XTi .

Test for balance: If not satisfactory: redo with more X’s or by
changing matching criteria.

Repeat until balance is satisfactory:
Estimate PrScore→ Check Balance→ Re-Estimate→ Check Balance
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Extending the NN matching

Matching with Replacement

If nearest control unit is already used, use it again.

Drop unmatched controlled units

Radius or Caliper Matching

Q: What if the NN is not a very good “clone” of the treated unit?

A: Can use a caliper: For each treated unit find all the control units
whose score differs by less than a given tolerance r chosen by the
researcher. Allow for replacement of control units. If none exists,
drop the unit.

Many-to-One:

Kernel: Choose all of them and use a (weighted) average

Caliper: All control units within the radius r from pi are matched to
unit i . Again, use (weighted) average of neighbours within r .
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The Propensity Score Paradox

Matching Vs Regression

More transparent & less model-driven. A non-parametric way (thus
less assumptions involved) of ensuring balance on observables.

Problem

To reduce Dimensionality use the Propensity Score, which however is
essentially a regression model, thus suffers from above-mentioned
problems.

The Key Difference

The Propensity Score is an ancillary statistic: You can attempt
as many estimations as you want, without losing degrees of freedom.

This is because you never work with the outcome. You remain
completely agnostic about the outcome.
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How to Check for Balance: Standardised Bias

MPs for Sale? November 2009

FIGURE 3. Covariate Balance Before and After Matching

Note: For each covariate the figure displays the standardized bias before matching (open circles) and after matching (closed circles).
Standardized bias is computed as 100 times the mean difference between treatment and control units divided by the pooled standard
deviation.

10

MPs for Sale? November 2009

FIGURE 3. Covariate Balance Before and After Matching

Note: For each covariate the figure displays the standardized bias before matching (open circles) and after matching (closed circles).
Standardized bias is computed as 100 times the mean difference between treatment and control units divided by the pooled standard
deviation.

10(Eggers & Hainmueller 2009)
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How to Check for Balance: Compare Distributions of
Important X’s

to find matches within 0.6 fraction of standard error of the score. To match multivariate distance within 
certain caliper of propensity score usually beats matching just on propensity score. Optimal full matching 
seems to offer attractive results on estimating the treatment effect. 
 
BALANCE CHECKING 
It is important to compare the influence of background characteristics between treated and control groups 
before matching for variable selection. It is also important to compare treated and control groups after 
matching to check for balance, Literatures suggest various methods to test for balance to see if observations 
with the same propensity score have the same distribution of observable covariates independent of 
treatment assignment. In other words, there is a need to test if the propensity score method is a reliable 
alternative to randomized clinical trials in terms of the bias introduced by using non-experimental data. A 
complex result, however, is that different methods can generate inconsistent answers.  
 
After adjusting for propensity score, additional adjustment should not provide any new information.  
Interaction terms, higher-order terms or different covariates may be required to improve the analysis 
because the current estimated score may not be an adequate balancing summary of all covariates. Of 
course, it is also possible that no adjustment can result to balance on matched sample, where the 
conclusion will be reached that the propensity score matching has not solved the problem of biased 
selection. 
 

      
 

Non-balanced Matching                                             Balanced Matching 
(Dashed curve is treatment, solid curve is control, from Shaikh and coworkers, 2005,) 

 
 
Baser (2006) proposed a set of guidelines for this purpose. 
 

1) Investigate t-statistics for all numerical variables and Chi-square test for all categorical variables 
between treated and controlled groups.  Insignificant p-values indicate adequate matching; 

2) Calculate average difference as a percentage of the average standard deviation,
)(

2
1

)(100

XCXT

CT

SS

XX

−

−
, 

where X is the set of covariates, T and C are treatment and control groups, S is standard 
deviation of these covariates.  Low value means suggest balance. The lower value suggests the 
potential benefit of matching; 

3) Compute a reduction bias percentage, 100*
X

)X()(

ICIT

ICITACAT

X
XXX

−
−−−

 where X is the 

mean of the covariates, A is after matching, I is before matching, T and C are treatment and 
control groups.  As expected, a larger reduction is desired; 

4) Use the Kalmogorov-Smirnov test to estimate density estimates for explanatory variables and 
propensity scores between treatment and control groups. Insignificant differences between the two 
groups expresses effective matching; 
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How to Check for Balance: QQ-Plots

(Packmohr)
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How to Check for Balance: Histograms & Scatterplots

(Packmohr)
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Balance Tests

Measuring Balance

T-tests

T-tests for the difference of means. Well-known but the null is the
groups are the same, so need to adjust significance levels. p-values
conventionally understood to signal balance (e.g., 0.10) are often too
low to produce reliable estimates.

Equivalence Tests

Use the null that the groups are different. Power of detecting
similarity increases as sample size increases.

Less well known. Make the tests to assess the covariates different
from the tests to assess the outcome.

Kolmogorov-Smirnov distributional tests

The test statistic is the maximum distance between the empirical
CDFs of the treatment and control distributions.

Good to detect imbalance beyond simply means comparisons.
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How to Check for Balance: T-Test & KS-test

are not captured by the set of controls included in the analysis. To be more confident
that our results are not a product of such differences, we conduct a further analysis.
We build on the previous analysis, in which we matched the preferences voted for
by tactical voters to those sincere voters would have voted for, if they had voted
tactically. Within the matched dataset, we now instrument tactical voting using a
constituency-level context variable, aiming to isolate variation in tactical voting that
is not due to unobserved individual differences. Our analysis is motivated by the
following question: if we select voters who are similar in all important observed

Fig. 3 Improved balance from genetic matching in the case of treatment versus control group 1

Table 1 LATE of tactical voting based on control group 1

Effect of voting tactically on preferences that are or would have been voted for on tactical grounds.

Local average treatment effect (LATE) 0.853 (0.138)

Abadie and Imbens’ standard errors are reported in parentheses (Abadie and Imbens 2006)

442 Polit Behav (2013) 35:429–452
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Political Knowledge (0−12) 7.337 7.271

Political Knowledge (0−4) 1.507 1.479

Politics Home
When Adolescent (1−4) 2.622 2.647

Social Class (1−5) 2.956 2.937

Age (in years) 47.196 47.42

Urban/Rural (1−5) 3.05 3.009

Income (23 Categories) 11.606 11.551

Female 1.495 1.517

Education (1−11) 6.204 6.262

University Degree 0.332 0.323

Church Attendance 0.528 0.528

Panel Attrition 0.33 0.314

Voted in 1998 1.09 1.095

Voted PvdA in 1998 0.205 0.226

Voted CDA in 1998 0.172 0.151

Voted VVD in 1998 0.226 0.196

Voted D66 in 1998 0.092 0.097

●

●

BM t p−value
AM t p−value

BM KS p−value
AM KS p−value

(Bølstad et al. 2013) (Dinas et al. 2015)
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Before and After Matching
Identification under Selection on Observables Matching
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group of subjects are exposed to a well-defined treatment, but, unlike experiments, composing a suitable 
control group systematically is more difficult.  
 
A wide range of estimation approaches has been developed in the last decade to evaluate the impact of 
medical, epidemiological or social policy interventions on subjects. Control subjects are determined to be 
suitable matches to treated subjects if they have similar observed characteristics. From a technical 
viewpoint, a significant obstacle in estimation is the presence of covariates. In theory, more covariates of 
subjects are beneficial to treatment effects evaluation; however, it poses a great challenge to experimental 
design and computation. 
 
In the aforementioned example of ‘unfair’ comparison, several forms of adjustment to subject selection bias 
have been introduced, including frequency adjustment, covariate adjustment or reweighing approaches 
(IPTW=Inverse Probability of Treatment Weighted). Among them, propensity score is a relatively novel 
approach to detect and remove the selection bias and estimation risk due to lack of good randomization. 
Statistically, propensity score is a conditional probability of being treated given a subject’s observational 
characteristics. The basic idea of propensity score is to replace a collection of confounding covariates in any 
observational study with one function of these covariates. It can be used to balance confounding covariates 
in treatment group and control group, therefore to reduce selection bias in observational studies, where the 
investigator has no control over the treatment assignment. The propensity score can be expressed as 
 
 
 
This implies that treatment choice (Z) and distributions of baseline patient characteristic (X) are conditionally 
independent for a given X. 
 
 
 
 
Besides predicted probability itself, Logit, log[(1-e(X))/e(X)],  Odds Ratio and Linear Index can also be 
defined as propensity score as long as its distribution approximates to normal. 
 
The propensity score has several advantages over other statistical methodologies. First, such data are 
relatively inexpensive to collect and it outperforms randomized experiments in practice, sometimes. Second, 
it can provide insights to design a new randomized experiment in the future. Propensity score matching 
before randomization and seeking the best pairing of subjects from a single group will increase balance on 
these covariates, improve efficiency of estimation, enhance the power of hypothesis testing, and reduce the 
required sample size for a fixed statistical power. Finally, but not least importantly, propensity score may 
shed light on generalization of findings from existing randomized experiments. A good example of propensity 
score matching is shown here in the aspirin study by Love (2004), the covariate balance was obtained by 
removing more than 95 percent of the selection bias through matching. 
 

                                  
 

Covariate Balance for Aspirin Study (Love, 2004) 
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Equal Percent Bias Reduction (EPBR)

If your controls are all normally distributed (more precisely, follow and
elliptic distribution) and your sample size is large enough, then
matching on Mahalanobis distance has the Equal Percent Bias
Reduction (EPBR) property.

This means that matching will not make balance on any covariate
worse.

It does not mean that your estimated treatment effect will be less
biased. It could be more biased if you do not have the right X’s.
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Genetic Matching

The problem is where to draw the line. In principle, given assumptions,
EPBC tells us that we can infinitely reduce bias. All we need to do is
iterate the procedure with different matching algorithms until we are sure
we found the best match. But this is often too time consuming and
sometimes requires a seemingly infinite number of comparisons.

A Solution: Genetic Matching

A combination of propensity score and Mahalanobis matching.

An automated iteration process that bring optimal matches, given X ,
in terms of bias reduction.

Greatly improved when including the p(Xi) as a covariate.

Follows Rubin and Rosenbaum in that in addition to propensity score
matching, it matches on individual covariates by minimizing the MD
of X to obtain balance on X .

Has been shown to recover experimental benchmarks
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Facts about Matching

Matching does not mean that you will get better balance on the
covariates that you match on.

Getting better balance on your controls does not mean that your bias
will decrease

Matching is susceptible to attenuation bias
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Example of Better Balance Increasing Bias

Imagine that there is a summer program that high school students
can take. Enrollees tend to be (1) harder working and (2) younger.

At the end of the following school year, there are 20 awards given to
students. Awards tend to be given to students who are (1) harder
working and (2) older.

We want to estimate the effect of the summer program on the
likelihood of winning an award. Imagine there is no effect. We match
on age.

Before matching, the treatment group will have younger students and
harder working students, so the bias will partly cancel.

After matching on age, the treatment group will tend to have harder
workers, but not younger students. So the hard work bias will no
longer be mitigated by the age bias.
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Example of Attenuation BiasMatching
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Potential Problems with Matching

What can go wrong?

1 There might not be support in the data.

2 There might be support, but you chose the wrong X’s.

3 You might have support and the right X’s, but your formula for the
propensity score is wrong (if you are doing propensity score matching)
or your controls do not each follow an elliptic distribution (if you are
doing Mahalanobis distance matching).

4 Everything else worked, but there was noise in your controls.

5 Everything worked perfectly, but people will still be skeptical or think
that you p-hacked.

Genetic Matching solves Problem (3) only.
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Examples from Genetic Matching

Dem Registration Pre/Post Matching
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Densities of Democratic Registration proportions by county.
Green lines are DREs and red lines optical counties.

Observational Data: Matching

0.0 0.2 0.4 0.6 0.8

0
1

0
2

0
3

0

Before Matching

X VARIABLE

D
e

n
s
it
y

DID NOT LEARN

DID LEARN

0.0 0.2 0.4 0.6 0.8

0
1

0
2

0
3

0

After Matching

X VARIABLE

D
e

n
s
it
y



129/294

Toolbox

Always establish balance before you even look at the Y

Look for balance not only at the characteristics included in matching
but higher polynomials and on other covariates. Balance should
extend beyond X if X is correctly specified.

Do not simply think of matching as an alternative or final resort when
design-based identification is not provided. Conversely, use it when
there is some design that allows you to make the
conditional-on-observables assumption more credibly.
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Numerous Extensions

E.g. Entropy Balancing (Hainmueller)

Synthetic Control (Abadie) (combining re-weighting and time-variant
data)

I Particularly useful for small-n comparative studies (using countries or
regions as units of analysis)

I Eg. Two independent studies presenting in the same panel the same
New Zealand case using synthetic control.

I If there are good data, can be powerful:

Cigarette Consumption: CA and the Rest of the U.S.
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Cigarette Consumption: CA and synthetic CA
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Instrumental Variables
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Instrumental Variables

An Introduction to Causal Diagrams (Judea Pearl)

D Y

X1

X2

X3

Imagine we are interested in the effect of
D on Y . For which variables should we
control in our regression equation to
make sure we have an unbiased estimate
of the ATE of D on Y ? You can assume
this is the correct model and that all X s
are pre-treatment.
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Instrumental Variables

An Introduction to Causal Diagrams

D Y

X1

X2

X3

Y = α + τD + β1X1 + β2X2 + ui

Imagine we are interested in the effect of
D on Y. For which variables should we
control in our regression equation to
make sure we have an unbiased estimate
of the ATE of D on Y? You can assume
this is the correct model and that all X s
are pre-treatment.
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Instrumental Variables

An Introduction to Causal Diagrams

D Y

X1

X2

X3

Y = α + τD + β1X1 + β2X2 + ui
Y = α + τ ′D + β1X1 + ui

Imagine we are interested in the effect of
D on Y. For which variables should we
control in our regression equation to
make sure we have an unbiased estimate
of the ATE of D on Y? You can assume
this is the correct model and that all X s
are pre-treatment.
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Instrumental Variables

An Introduction to Causal Diagrams

D Y

X1

X2

X3

Y = α + τD + β1X1 + β2X2 + ui
Y = α + τ ′D + β1X1 + ui
Y = α + τ ′′D + β1X2 + ui

Imagine we are interested in the effect of
D on Y. For which variables should we
control in our regression equation to
make sure we have an unbiased estimate
of the ATE of D on Y? You can assume
this is the correct model and that all X s
are pre-treatment.
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Instrumental Variables

An Introduction to Causal Diagrams

D Y

X1

X2

X3

Y = α + τD + β1X1 + β2X2 + ui
Y = α + τ ′D + β1X1 + ui
Y = α + τ ′′D + β1X2 + ui
τ = τ ′ = τ ′′

Imagine we are interested in the effect of
D on Y. For which variables should we
control in our regression equation to
make sure we have an unbiased estimate
of the ATE of D on Y? You can assume
this is the correct model and that all X s
are pre-treatment.
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Instrumental Variables

An Introduction to Causal Diagrams

D Y

X1

X2

X3

What about X3?

Imagine we are interested in the effect of
D on Y. For which variables should we
control in our regression equation to
make sure we have an unbiased estimate
of the ATE of D on Y? You can assume
this is the correct model and that all X s
are pre-treatment.
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Instrumental Variables

An Introduction to Causal Diagrams

D Y

X1

X2

X3

Y = α + τD + β1X1 + β2X2 + β3X3 + ui
Y = α + τ ′D + β1X1 + β2X3 + ui
Y = α + τ ′′D + β1X2 + β2X3 + ui
Y = α + τ ′′′D + β1X1 + ui
Y = α + τ ′′′′D + β1X2 + ui
τ = τ ′ = τ ′′ = τ ′′′ = τ ′′′′

Imagine we are interested in the effect of
D on Y. For which variables should we
control in our regression equation to
make sure we have an unbiased estimate
of the ATE of D on Y? You can assume
this is the correct model and that all X s
are pre-treatment.
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Instrumental Variables

Our Running Example
We are interested in whether watching Western TV in communist regimes
affected attitudes towards the political regime.

Let’s denote as D = 1 the treatment state, i.e. watching Western
TV, and as D = 0 the control state, i.e. not watching Western TV.

By now we know that Y1 denotes support for communism if unit i
watches Western TV and Y0 if i does not watch Western TV.

We also know the problem with the following regression equation:

Yi = α + τDi + ui

People who watched western TV would probably differ in their
attitudes towards Communism from people who did not watch
western TV even if they were not watching western TV.
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Instrumental Variables

Putting this idea into context

D Y

X1

X2

X3

X1=Political Interest. X2=Socioeconomic Status.
X3=Religious Beliefs.
D=Western TV. Y=Support for the Regime.
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Back to Reality

Do we really know this is the correct model?

Eg. How to justify the absence of this arrow?

D Y

X1

X2

X3

X3=Religious Beliefs.
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Instrumental Variables

What if...?

D Y

X1

X2

X3Z

Z =? What could Z be? Why would it be helpful?
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Z=Access to Western TV

Hainmueller
and Kern (2009)
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The Intuition
Why is this variation helpful?
The whole logic is based on the idea that we need to go back one step: D is itself a
random variable, which means that even if units select their values in this state, there
may be some other [prior] state that predicts D = d and can be regarded as having been
randomly assigned. If we find such a variable, we call it an instrumental variable, or
simply an instrument. Here, we will refer to instruments as Z.

We can treat Di the same way as Yi :

D0:Treatment Status under the state Z = 0

D1:Treatment Status under the state Z = 1

I In this example, D0 refers to the probability of watching TV for
someone who lived in an area with only limited or no access to western
TV (e.g. Dresden) & D1 refers to the probability of watching TV if you
have access to it.

Z does not need to deterministically predict D.

We are fine with finding people who live in Dresden watching Western TV and/or
people not residing in Dresden not watching Western German TV, insofar as the
overall proportion of those watching TV in Z = 1 is higher than in Z = 0.
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The Reduced Form

What is the regression equation now?

Yi = α + θZ + ui

What is the quantity captured by θ?

E (Yi |Zi = 1)− E (Yi |Zi = 0)

Have we seen this quantity before?

The Intent-To-Treat Effect

ITT ≡ Support towards the regime conditional on access to Western TV
(we remain agnostic with regard to whether people actually watched
Western TV).
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Compliance

A Precondition for the IV estimation

Di = α + λZ + ui

λ should be 6= 0.

For this to happen, people in Dresden should actually watch on
average W. TV less than other people

Think of it as a lab experiment

Imagine we give to some people a treatment but we do not know if
they comply to the assignment

I Some people assigned to take the treatment (not watch TV) may
actually take it: compliers

I Some people assigned not to take the treatment (watch TV) may not
take it: non-compliers
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Classification, Z and D

Z = 0
D0 = 0 D0 = 1

Z = 1
D1 = 1 Complier Always Taker
D1 = 0 Never Taker Defier
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Classification, Z and D

Z = 0
D0 = 0 D0 = 1

Z = 1
D1 = 1 Complier Always Taker
D1 = 0 Never Taker Defier
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Classification, Z and D

Z = 0
D0 = 0 D0 = 1

Z = 1

D1 = 1 Watched TV only Watched
if not in Dresden TV

D1 = 0 Did not Watched TV only
Watch TV if in Dresden
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Potential Outcomes Model for Instrumental Variables

Following Angrist, Imbens and Rubin (1996), we can define:

Definition

Compliers: D1 > D0 (D0 = 0 & D1 = 1)

Always-Takers: D1 = D0 = 1

Never-Takers: D1 = D0 = 0

Defiers: D1 < D0(D0 = 1 & D1 = 0)

Problem

Only one of the potential treatment indicators (D0,D1) is observed, so we
cannot identify which group any particular individual belongs to.

Who are the compliers? (Examples...)
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Estimation

The Wald Estimator
Imagine that we only have compliers, i.e. people who only watched TV if
they were not in Dresden, so that D1i = 1 and D0i = 0 ∀ i ∈ N. Would
the following equation tell us something about the effect of W.TV on
Communist support?

Yi = α + θZ + ui

If Di = Zi then θ = τ = E [Y |WesternTV ]− E [Y |NoWesternTV ].

But we know that this is not true. Moreover, we know how many
watched TV among those in Dresden and those not in Dresden. So,
we could adjust for this. How?

The Wald Estimator

τIV = E [Yi |Zi=1]−E [Yi |Zi=0]
E [Di |Zi=1]−E [Di |Zi=0] . Does this remind you of anything? Have a

look at the nominator and the denominator separately.
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The Wald Estimator

The Nominator

E [Yi |Zi = 1]− E [Yi |Zi = 0]

This is θ : Yi = α + θZ + ui

What is θ? (What is a regression coefficient?)

θ =
Cov(Z ,Y )

Var(Z )

The Denominator

E [Di |Zi = 1]− E [Di |Zi = 0]

This is λ : Di = α + λZ + ui
What is λ? (What is a regression coefficient?)

λ =
Cov(Z ,D)

Var(Z )
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The Wald Estimator

Taken together:

Wald Estimator =
Cov(Z ,Y )

Cov(Z ,D)

Does this give us the ATE or the ATT?
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The IV Assumptions

1. Ignorability

Think about Dresden and Western TV

What qualities should Dresden have to be regarded a good instrument
for Y ?

Hint: We started all this because watching TV was not randomly
assigned.

Ignorability: Definition

The Instrument is independent of potential outcomes and treatments:

[Y0,Y1,D0,D1 ⊥ Z ]

Do you think this is satisfied in our example?



155/294

The IV Assumptions

2. First Stage

Why did we choose Dresden and not any other region?

First Stage: Definition

The probability of being treated needs to be different between those
assigned the treatment and those not assigned the treatment:
E (D1 − D0)) 6= 0

This is quite easy to test. How?

Di = α + λZ + ui

All we ask is that λ 6= 0
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The IV Assumptions

3. Exclusion

The instrument does not affect the outcome in any other way than
through the treatment

In our case: People in Dresden should be otherwise exchangeable with
people elsewhere.

Exclusion: Definition

Define as Ydz the potential outcome of unit i with Z = z and D = d . So,
for instance, Y10 is an always taker. Then, exclusion is:
P(Yd1 = Yd0) = 1.

Do you think this is satisfied in our example?
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The IV Assumptions

Exclusion vs Ignorability

Instrumental Variables with Potential Outcomes (With Covariates) More Examples

Balance

J. Hainmueller (MIT) 48 / 50

Is this evidence for exclusion or for ignorability?
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The IV Assumptions

Exlusion vs Ignorability

Instrumental Variables with Potential Outcomes (With Covariates) More Examples

Balance

J. Hainmueller (MIT) 48 / 50

Exclusion
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The IV Assumptions

4. Monotonicity

No one is encouraged to watch TV because of not having access to it.

In our typology, monotonicity assures there are no defiers and that
there are at least some compliers

Monotonicity: Definition

No one does the opposite to his/her assignment, no matter what the
assignment is: D1i ≥ D0i ∀ i
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How the Assumptions Work

1. Independence/Ignorability

Allows us to identify the causal effect for each group: If Z is randomly
assigned, both the ITT and first stage are causally identified.

3. Exclusion

Exclusion restrictions ensure the causal effect is zero for always- and
never-takers. It is only non-zero for compliers and defiers. Allows to
attribute correlation between Z and Y to the effect of D alone;
assumption is not testable.

4. Monotonicity

Ensures there are no defiers and there exists at least one complier

2. First stage

Ensures estimation is possible, i.e. there is a link from Z to D.
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The IV Estimand=LATE

If Assumptions 1-4 hold: the IV estimand is the Local Average Treatment
Effect

LATE: Definition

If Assumptions 1-4 hold, then:

E [Yi |Zi=1]−E [Yi |Zi=0]
E [Di |Zi=1]−E [Di |Zi=0]

= E [Y1i − Y0i |D1i > D0i ].

When 1-4 are met, we can get the LATE by looking at how well Z

predicts Y and adjusting for the fact that Z is not the same as D

How informative is the LATE?
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LATE

Better LATE than Nothing

The LATE refers to units whose value in D depends on their value in
Z. This means, these people can be manipulated by the instrument,
i.e. the instrument can determine their status, they react to it they
are responsive

The LATE cannot say anything about peple not affected by the
assignment to the treatment: those who do not change treatment
status as a result of their being assigned to do so.

The ”L” part of the LATE does not have actual geographical
meaning. It simply denotes the units that are responsive to the
treatment assignment mechanism.
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Adding Covariates

In many instances all these four assumptions do not hold just like that.
They hold only if we include controls. For example, you need to include all
indicators shown in the previous graph where Dresden was significantly
different from other regions. Thus:

Ignorability [Y0,Y1,D0,D1 ⊥ Z |X ]

Exclusion P(Y1d = Y0d |X ) = 1

First Stage P(D1 = 1|X ) ≤ P(D0 = 1|X )

Monotonicity P(D1 ≥ D0|X ) = 1

How to use the IV-Estimand in practice in the presence of controls?
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Two-Stage-Least-Squares Estimator

Consider an outcome Y , a treatment D that is not randomly assigned,k
covariates X , and an instrument Z , for which Assumptions I-IV are met.

Estimation

First Stage

Fit the following equation into the data:
Di = α + θZi + β1X1i + · · ·+ βkXki + vi , and obtain the D̂.

Second Stage

Regress Y on D̂ and X ′s:
Yi = α + τ D̂ + +β1X1i + · · ·+ βkXki + ui
τ provides the LATE.
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Two-Stage-Least-Squares Estimator

Toolkit

Regress your D on your Z plus all your pre-treatment controls that you
think help you satisfy ignorability and exclusion (or even first stage).

RULE: Do this with OLS no matter what your Di is.

Take the predicted values and use them the way you would use D.
There are your D̂.

Regress Y on D̂ plus all your pre-treatment controls that you included
in the first stage. Nothing less and nothing more.

You need to adjust the standard errors for the first-stage predictions

Any statistical software does this very easily and gives you the correct
standard errors.

This is what the Two-Stage-Least-Squares estimator is: The IV
estimand with controls.
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Extensions

Bias of 2SLS and the LARF estimator

When including covariates 2SLS can be biased, even if everything goes
well. What to Do:

Nothing

Use a more difficult-to-implement estimator (with problematic
finite-sample properties): The Local Average Response Function
estimator, proposed by Abadie

You need to use, R, Matlab or an ado file in STATA.

Corrects the problem

Most often trivial differences between 2SLS and LARF
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Examples

Angrist

Question: Does being a veteran pay off financially?

Problem: People choose whether to go to the army

Solution: Using the Lottery Draft

Turnout

Question: Is there a cost in voting?

Problem: People choose whether to vote

Solution: Using rainfalls on the day of the election

Acemoglu

Question: Do institutions matter for growth?

Problem: Growth and institutions not randomly assigned, e.g. Putnam etc.

Solution: Using variation in mortality rates in colonies, 1700-1900s.
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The Regression Discontinuity Design
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Regression Discontinuity Design

Background

RDD is a fairly old idea (Thistlethwaite and Campbell, 1960) but this
design experienced a renaissance in recent years.

Assignment to treatment and control is not random, but we know the
assignment rule determining how people are assigned or select into
treatment

Widely applicable in a rule-based world (adiminstrative programs,
elections, etc.)

High internal validity: In their validation study Shadish, Clark, and
Steiner (2010) identify RDD as one of the few observational study
designs that can accurately reproduce experimental benchmarks



170/294

What is it?

Definition

Imagine a binary treatment D that is completely determined by the
value of a predictor Xi being on either side of a fixed cutoff point c :

Di = 1(X > C ) so =

{
D1 = 1 if Xi > c
D0 = 0 if Xi < c

X , called the forcing variable, may be correlated with the outcomes Y
so comparing treated and untreated units does not provide causal
estimates

Design arises often from administrative decisions, where the allocation
of units to a program is partly limited for reasons of resource
constraints, and sharp rules rather than discretion by administrators is
used for allocation.
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An Example

Thistlethwaite and Campbell, 1960

Question: What is the effect of scholarship on later income?

Problem: Scholarships go to the best students

Soultion: Scholarships are given on the basies of whether or not a
student’s test score exceeds some threshold c

Why is this useful?

Treatment D is scholarship

Forcing Variable X is SAT score with cuttoff c

Outcome Y is subsequent earnings

Y0 denotes potential earnings without the scholarship. Y1 denotes
potential earnings with the scholarship.

Y1 and Y0 are correlated with X : on average, students with higher
SAT scores obtain higher earnings
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Two types of RDD

Sharp Regression Discontinuity Design

Treatment is deterministically assigned conditional on whether the
unit is below or above the treatment

Examples: Scholarships, taxation schemes etc.

Fuzzy Regression Discontinuity Design

Treatment is probabilistically assigned conditional on whether the unit
is below or above the treatment

Examples: Electoral thresholds, class size etc.

We will mainly focus on the sharp RDD
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Sharp RDD: An Illustration
How the treatment is assigned
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An Illustration

The Effect on the Outcome
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An Illustration

The Effect on the Outcome
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Identification

It practically necessitates one (important) assumption

Continuity: Definition

E [Y1|X ,D] and E [Y0|X ,D] are continuous in X around the threshold
X = c (to compensate for lack of common support)

Continuous density of the forcing variable
If this assumption holds, then
τSRDD = E [Y1 − Y0|X = c] = E [Y1|X = c]− E [Y0|X = c]
Without further assumptions τSRDD is only identified at the threshold

Continuity: What it means in Practice

The density in the area of the threshold is smooth. If GPA is between 0
and 20, and if scholarships are given above 18.5, whether one will have
18.4 or 18.6 is practically coincidental.
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An Example: Eggers 2010

Duverger’s Law

A majority vote on one ballot is conducive to a two-party system.
Proportional representation is conducive to a multiparty system.

We expect the number of parties to increase when going from a
majority to a proportional electoral system

The Problem

Countries decide what electoral system they have and this is in part
determined by their social, linguistic etc. divisions which also give room to
parties, eg. the Netherlands etc.

The Solution

In French municipalities, the electoral rule used to elect the municipal
council depends on the city’s population:
Cities with fewer than 3,500 people elect their councils with plurality
Cities with a population of 3,500 or more use a PR rule
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An Illustration
Duverger’s Law
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Another Example: Lee 2006

Party Incumbent Advantage
An ongoing debate about whether incumbents in the American
Congress have an advantage of reelection

Discussion motivated by the lack of variation in winning patterns

The Problem

Do they win because they have won already? And then why did they win
at first place? Maybe they are just more efficient?

The Solution

With so many elections and states you can just see whether those who just
won at t0 did better in election t1 than those who just (marginally) lost.
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The Set-Up

Party Incumbent Advantage

What is the effect of incumbency status on vote shares?

Let i indicate congressional districts, j indicate parties and t indicate
elections, d indicate incumbency status.

Vditj is the vote share of j in i at t as incumbent d = 1 or
non-incumbent d = 0

Party incumbency effect: V1itj − V0itj

Margin of victory for party j : Zitj = Vitj − Vitk where k indicates the
strongest opposition party.

Party incumbency status is then assigned as:

Dij ,t+1 = 1[Zitz > 0] so Di =

{
Dij ,t+1 = 1 if Zitj > 0
Dij ,t+1 = 0 if Zitj < 0
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An Illustration
Incumbency Advantage
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Estimation

The Intuition

We are interested in minimally extrapolating at the point of the
discontinuity

To do this we need an interaction term

Yi = α + β1(Xi − c) + τDi + β2(Xi − c) · Di + ui

We are interested in τ . Why?

Because it is the effect of Di evaluated at the point of the
discontinuity

Is this enough?



183/294

An Illustration
Linear Slopes
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An Illustration
Different Slopes
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Why does the RD solve the selection problem?
Back to our selection bias formula
Assume there is a homogenous treatment effect, τ and a confounder X :

Yi = α + τD + βX + ui

Then:

E [Yi |Di = 1]− E [Yi |Di = 0] =

[α + τ + βE(Xi |Di = 1) + E [ui |Di = 1]−
−[α + 0 + βE [Xi |Di = 0] + E [ui |Di = 0] =

τ + β[E(Xi |Di = 1)− E(Xi |Di = 0)] =

true effect + Bias

Since we assume that X varies smoothly with respect to Z (i.e. there are no jumps at
the treatment threshold z0):

E [Yi |Di = 1]− E [Yi |Di = 0] =

= τ + β[(x∗ + δ)− x∗] =

= τ + β∗ · δ ≈
≈ τ
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Estimation

Global Polynomial Function

Better to be on the safe side

Avoid Non-linearities falsely taken for discontinuities

Add many polynomials

Yi = α + β1(Xi − c) + τDi + β2(Xi − c) · Di

+β3(Xi − c)2 + β4(Xi − c)2 · Di

+β5(Xi − c)3 + β6(Xi − c)3 · Di

+β7(Xi − c)4 + β8(Xi − c)4 · Di

+ui

We are still interested in τ .

The equation can be augmented by including control variables
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Estimation

Local Linear Regression

We are interested in minimally extrapolating at the point of the
discontinuity

To do this we need an interaction term

Yi = α + β1(Xi − c) + τDi + β2(Xi − c) · Di + ui

We are interested in τ . What has changed?

This regression is estimated linearly in the area around the threshold.
Not in all the range of the forcing variable. A kernel regression
applied locally around the cutoff point

Make sure your software uses a triangular kernel

Again, the equation can be augmented by including control variables
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Bandwidth

Cross-validation

Bandwidth: The area below and above the threhold

How far to open the window?

I Try different windows and make sure you get effects even when you
have closed it quite a lot (despite increasing uncertainty)

Optimal Bandwidth

A data-driven, flexible algorithm to optimally choose the bandwidth

Proposed by Kalyanaraman and Imbens

Available in Stata and R.

In there, use a local regression to estimate the effects
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An Application

Do MPs make more money from politics?

Eggers and Hainmueller 2009: MPs for Sale?
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Concerns

1. Sorting

Subjects are aware of these interventions and they manipulate their
position just below or above the treatment

How would we know?

Graph the density function of the forcing variable

Use density as the outcome and test for a gap at the point of the
discontinuity

Use McCrary density test (available in R, RDD package)

I The null is no sorting
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An Illustration

Evidence for Sorting

Example: Beneficial job training program offered to agents with income
< c . Concern, people will withhold labor to lower their income below the
cut-off to gain access to the program.
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How to test for it

Applying the RD in the forcing variable

Example: Beneficial job training program offered to agents with income
< c . Concern, people will withhold labor to lower their income below the
cut-off to gain access to the program.
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Concerns

2. Other Jumps

A good check is to look for within group jumps.

split each group, below or above the threshold, in the median (to
maximize power) and treat this point as the cutoff.

Run the RDD

You hope not to find a jump. You use only all observations with
X < c and separately another test with all observations X ≥ c

3. Placebo Outcomes

Use placebo outcomes as dependent variables and again hope for
zero-effects
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A typical Placebo Outcome
Use Yt−1 as the outcome of interest
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Fuzzy RD

The Intuition

Sometimes crossing the threshold increases the probability of taking
the treating but does not guarantee treatment intake.

This is still useful if we combine the ideas of IVs and RDD

We use the forcing variable, as an instrument for treatment:

P(Di = 1|xi ) =

{
g1(xi ) if xi ≥ c
g0(xi ) if xi < c

,where g1(c) 6= g0(c).

The functions g0(xi ) and g1(xi ) can be anything as long as they differ
(and the more the better) at c . If g1(c) > g0(c), then xi ≥ c makes
treatment more likely (and vice versa).
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An Illustration
Remember the Sharp RD: How the treatment is assigned
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An Illustration: E [D|X ]
Compare with the fuzzy RD: How the treatment is assigned
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An Illustration: E [Y |X ]
The Outcome graph remains similar
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Identification

Identification Assumption

Binary Instrument Z with Z = 1{X > c}
Find the optimal bandwidth and focus on the observations within this
bandwidth, where E (Y |D,X ) jumps, so that X ≈ c and thus
E (X |Z = 1)− E (X |Z = 0) ≈ 0

All IV assumptions hold (ignorability, exclusion, monotonocity etc.)

Thus, for a neighborhood ∆, centered around c :

The Fuzzy RD Estimand

τFRDD = E [Y1 − Y0|X = c and i is a complier]

= lim
∆→0

E [Yi |c < xi < c + ∆]− E [Yi |c −∆ < xi < c]

E [Di |c < xi < c + ∆]− E [Di |c −∆ < xi < c]
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Estimation

Intuition

Z is the instrument. Z = 1 if you pass the threshold and Z = 0 if not.

D is the treatment. D = 1 if you take the treatment (e.g. scholarship) and D = 0 if not.

In this setup, we apply the IV estimation.

Step 1: Run the first-stage regression:
D = α + β1Z + β2(X − c) + β3Z · (X − c) + ui

Take the D̂i

Regress Y on D̂,X as if it were a sharp RD:

Y = α + β1(X − c) + τ D̂ + β2D̂ · (X − c) + ui

Focus on τ

Specification can be more flexible by adding (p) polynomials (X 2,X 3, ...,X p) and

their interactions with D̂.

Check First Stage

If you want to include controls, do so, but in both stages, the same as with a
normal IV.
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Final Checklist

If you want to use an RDD:

Find a discontinuity that determines or affects who gets the treatment

Estimate the treatment effect using:
I a global polynomial equation
I a local linear regression

In the second case, first find the optimal bandwidth

Use different bandwidths (preferably smaller) to check the robustness
of the results

Check for sorting

Check for within-group jumps

Check for discontinuities in placebo outcomes

In a Fuzzy RDD

Do all the above plus:

Graph E [D|X ], the probability of taking the treatment given the
forcing variable
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Appendix: The RD & Randomization Inference
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RD as a Local Randomized Experiment

The Intuition

If variation in the treatment near the threshold is approximately
randomized, then it follows that all “baseline characteristics” –all those
variables determined prior to the realization of the assignment variable–
should have the same distribution just above and just below the cutoff
(Lee and Lemieux, 2009)

If this happens, then you can treat units below and above the cutoff point
as exhangeable. This gives options for difference-of-means estimation. But
two problems remain:

What decision rule to use to cut the window now?

What inference strategy to use, after having been left with a very
small portion of the data?
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Adressing the two Questions

Choosing the Window

We test for sequentially nested windows (from small to large) whether
any covariate imbalances between treated units and untreated units
are greater than what we would expect to occur from sampling
variability alone (Cattaneo, Frandsen and Titiunik 2013).

Can we reject the sharp null hypothesis that there was no effect of the
covariates taken together on the treatment assignment of any unit?

What Inference Strategy?

Using Randomization Inference (a quick guide to this follows . . . )
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Randomization Inference

The idea is based on one specific hypothesis, the Sharp Null:

A hypothesis of no effect for all units

A unit labeled as “treated” will have the exact same outcome as a
unit labeled as “control.”

Under the null, the units’ responses are fixed and the only random
element is the meaningless rotation of labels.

Intellectual Background: Fisher & “The Lady Teasting Tea”
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Another Example

How many ways are there to choose 4 cups out of 8 cups?
(without replacement)

Sunday, 3 November 13
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Pick the First One

How many choices do you have?

Sunday, 3 November 13
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Pick the First One

How many choices did you have?

Sunday, 3 November 13

8
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Pick the Second One

How many choices did you have?

Sunday, 3 November 13
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Pick the Second One

How many choices did you have?

Sunday, 3 November 13

8 × 7
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Pick the Third One

How many choices did you have?

Sunday, 3 November 13

8 × 7 × 6
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Pick the Fourth One

How many choices did you have?

Sunday, 3 November 13

8 × 7 × 6 × 5
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Did we miss something out?

8× 7× 6× 5 = 1, 680.
Do we really have 1,680 ways of choosing 4 cups?

Sunday, 3 November 13

8 × 7 × 6 × 5
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Did we miss something out?

What if I had started the other way round?

Sunday, 3 November 13
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Did we miss something out?

What if I had started the other way round?

Sunday, 3 November 13
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Did we miss something out?

What if I had started the other way round?

Sunday, 3 November 13
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Did we miss something out?

What if I had started the other way round?

Sunday, 3 November 13
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Would it matter for the experiment?

Stopping at 1,680 would have considered this selection different to
the previous one that ended with the first four cups being chosen.
And it would have considered any different order that would end up
with the same cups as different.

This means we need to take into account in how many ways we could
have taken the cups we did.

Sunday, 3 November 13
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How many ways are there to arrange four cups?

Pick One:

Sunday, 3 November 13
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How many ways are there to arrange four cups?

Pick One:

Sunday, 3 November 13

4
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How many ways are there to arrange four cups?

Repeating the procedure . . .

Sunday, 3 November 13

4 × 3 × 2 × 1
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How many ways are there to arrange four cups?

Repeating the procedure . . .

Sunday, 3 November 13

24 Ways



223/294

Fisher’s Exact Test

Estimating the Probability of H0

So, we have in total 1,680/24=70 ways in which we can choose
randomly 4 cups out of 8

70 means the total number of possible outcomes is 70. This is always
our denominator.

Out of these 70 possible permutations, how many would include 4
correct choices and no incorrect choices?

In other words, out of these 70 possible ways of choosing 4 out of 8
cups, how many could be: 4 correct and 0 incorrectly chosen cups?

. . .

What is the probability of choosing this by accident? 1/70 = 0.014.
This is the significance level for testing the null hypothesis that the
lady has no ability to discriminate

Could we believe then the lady’s claim?
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What about the other probabilities?

The Lady has . . .

1 way of making 4 correct and 0 incorrect choices

16 ways of making 3 correct and 1 incorrect choices

36 ways of making 2 correct and 2 incorrect choices

16 ways of making 1 correct and 3 incorrect choices

1 way of making 0 incorrect and 4 correct choices

If we add up all the possible outcomes, how many outcomes will we
get?

70
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H0: Associating Outcomes with Probabilities

Cumulative Probability:

The probability of finding 3 cups
is: 16/70

Do we stop here?

The probability of finding 4 cups
is: 1/70

The probability of finding at
least 3 cups is: 1.7=0.24 0

.1
.2

.3
.4

.5
De
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ity

4/0 3/1 2/2 2/2 1/3 0/4
Outcomes

Sunday, 3 November 13
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H0: Associating Outcomes with Probabilities

Cumulative Probability:

The probability of finding 3 cups
is: 16/70

Do we stop here?

The probability of finding 4 cups
is: 1/70

The probability of finding at
least 3 cups is: 1.7=0.24
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Fisher’s Test: An Assessment

The test is distribution (and model) free. The only probability used in
this experiment is the probability created by the experimenter.

If the randomisation model is not correct the test level will still be
correct

But in this test the problem is that we are not very sensitive. With
only 8 cups and fixed margins even one mistake makes us fail to reject
the null, gives a p-value of .24

The key point here is that this is not a feature of the test, but rather
of the design. Had we allowed for a different and more sensitive
design, we would have more permutations and thus we could still
reject the null even if the lady had made one mistake: Binomial
probability test (bitest in STATA).

This test is Fisher’s exact test: exact in that you get the exact
probability of observing what you get from the data by chance.

Randomisation becomes the key idea in statistics with this
experiment.

This is the formal introduction of experiments in social sciences.
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Back to the RD

Step 1: Calculate differences-in-means between treated and untreated
observations (within the chosen window for which local randomization
assumption holds).

Step 2: Simulate large number of hypothetical local randomization
outcomes around the threshold under assumption that the LATE is
zero for all units.

Step 3: Compare differences-in-means estimate from data to the
mean of all differences-in-means estimates over all hypothetical local
randomization outcomes under assumption of no treatment effect for
any observation.

Remember: If the sharp null hypothesis was true and the LATE was 0
for all units, then we can just randomly reassign the units to fall
below or above the threshold and estimate the LATE from every
reassignment.

If we do that 10000 times, we get the sampling distribution of LATEs
under the assumption of no treatment effect for any unit.
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Sampling distribution of the estimated LATE

Estimated LATE
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Constructing CIs

Impose further assumption: No treatment effect heterogeneity in
window directly surrounding the threshold.

Impute missing “treated” values by adding the estimated LATE to the
observed untreated values.

Impute missing “untreated” values by substracting the estimated
LATE from the observed treated values.

List the estimated LATEs from each local randomization in ascending
order: The 2.5th percentile marks the bottom of the 95% confidence
interval, and the estimate at the 97.5th percentile marks the top.
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Difference-in-Differences
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Intuition

Creative use of variation both over time and across space:

Fixed effects estimation of aggregate data

Imagine we want to evaluate the efficiency of a new program aiming at
making the allocation of benefits within municipalities more effective. The
project is applied to some municipalities but not others.

Scenario 1

We observe funding allocation only after the policy has been
implemented.

Compare the chosen municipalities with those not chosen

What is the problem here?

How do we know if the two groups are exchangeable?
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Intuition

Creative use of variation both over time and across space:

Fixed effects estimation of aggregate data

Imagine we want to evaluate the efficiency of a new program aiming at
making the allocation of benefits within municipalities more effective. The
project is applied to some municipalities but not others.

Scenario 2

Imagine we observe only the chosen municipalities, both before and
after the policy introduction

Compare their outcomes before and after the policy introduction

What is the problem here?

How do we know any change is because of the intervention and not
because of general national macroeconomic trends?
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Intuition
Creative use of variation both over time and across space:

Fixed effects estimation of aggregate data

Imagine we want to evaluate the efficiency of a new program aiming at
making the allocation of benefits within municipalities more effective. The
project is applied to some municipalities but not others.

Scenario 3

Imagine we observe both treated and untreated municipalities, both
before and after the intervention

Compare Treated with untreated before and after the intervention:

τ = [Treatedt=1 − Untreatedt=1]− [Treatedt=0 − Untreatedt=0]

Imagine τ > 0. Could it be because of the national economy?

Could it be because the treated municipalities are generally different
from the non-treated municipalities?
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An Example

Voting After Bombing
The Spanish 2004 general seemed to be an comfortable victory for the
incumbent Conservative Party (PP). But things did not go as expected:

On March 11, three days before election, Islamic terrorists deposited
nine backpacks full of explosive in several trains arriving in a central
train station in Madrid (Atocha). 191 people were killed and 1,500
wounded.

Spain had been declared as one of al Qaeda’s targets, after the
decision of the Spanish government in March 2003 to join the US in
the war against Iraq.

Although PP targeted ETA, it was soon realized that the attack had
been executed by an islamic terrorist group.

Did the Attack affect the outcome of the 2004 election? Would PP have
won in the absence of the Attack?
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Atocha
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Atocha
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The setup

The Question
Did the terrorist attack determine the winner of the 2004 Spanish election? [The
implications of this question are important, since for example the first thing the socialist
party did after it got elected was to withdraw, as promised, from Iraq].

The Problem
We cannot know what people would have voted without the event. We cannot observe
them. Hence, most studies have rested upon post-election surveys, where people are
asked their views about the attack. We are missing the counterfactual: E(Y0|D = 1)
(Voting without knowing about Atocha.

The Solution
Absent citizens (voters) who live or reside abroad could vote in the local Spanish
consulate either in person or by mail by 7, March 2004. Compare the 14 March votes
with the absentee votes cast before the event.

Is this comparison enough?
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The setup

The Question
Did the terrorist attack determine the winner of the 2004 Spanish election?

The Problem
We cannot know what people would have voted without the event. We are missing the
counterfactual: E(Y0|D = 1) (Voting without knowing about Atocha.)

The Solution
Absent citizens (voters) who live or reside abroad could vote in the local Spanish
consulate either in person or by mail by 7, March 2004. Compare the 14 March votes
with the absentee votes cast before the event.

No, this is why we will use the Difference-In-Differences estimator:
[PPNationals2004 − PPAbsent2004]− [PPNationals2000 − PPAbsent2000]
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The Framework

Definitions (The simplest case)

Two groups

D = 1 Treated Units

D = 0 Control Units

Two periods

T = 0 Pre-treatment Period

T = 1 Post-treatment Period

Potential Outcomes Yd(t)

Y1i (t) Potential outcome i attains in period t if treated between t0

and t1

Y0i (t) Potential outcome i attains in period t if not treated between
t0 and t1
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The Framework

Definitions (The simplest case)

Two groups

D = 1 Voting knowing about Atocha

D = 0 Voting without knowing about Atocha

Two periods

T = 0 Before Atocha

T = 1 After Atocha

Potential Outcomes Yd(t)

Y1i (t) Vote choice if i casting a ballot after March 11.

Y0i (t) Vote choice if i casting a ballot before March 11.
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The DD Estimand

Defining The Causal Effect

τit = Y1i (t)− Y0i (t)
But we are interested in what happens in t1, because the treatment is only
realized after t0. Thus, we would like to use the classic ATT estimand,
formulated as follows:
τATT = E [Y1(1)− Y0(1)|D = 1]

The problem is D occurs only after t = 0 (Di = Di (1) and
Yi (0) = Y0i (0)) we have Yi (1) = Y0i (1) · (1− Di ) + Y1i (1) · Di
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The Potential Outcomes

Let’s now summarize what we observe:

Post-Period(t1) Pre-Period(t0)

Treated D = 1 E [Y1(1)|D = 1] E [Y0(0)|D = 1]
Control D = 0 E [Y0(1)|D = 0] E [Y0(0)|D = 0]

The Problem

We cannot observe E [Y0i (1)|D = 1]: What is the average post-period
outcome for those treated in the absence of the treatment?
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The Potential Outcomes

Defining The Causal Effect

τit = Y1i (t)− Y0i (t)

Let’s now summarize what we observe:

Post-Period(t1) Pre-Period(t0)

Treated D = 1 E [Y1(1)|D = 1] E [Y0(0)|D = 1]
Control D = 0 E [Y0(1)|D = 0] E [Y0(0)|D = 0]

Control strategy: Treated: Before and After

Use E [Y (1)|D = 1]− E [Y (0)|D = 1]

Assumes E [Y0(1)|D = 1] = E [Y0(0)|D = 1]
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The Potential Outcomes

Defining The Causal Effect

τit = Y1i (t)− Y0i (t)

Let’s now summarize what we observe:

Post-Period(t1) Pre-Period(t0)

Treated D = 1 E [Y1(1)|D = 1] E [Y0(0)|D = 1]
Control D = 0 E [Y0(1)|D = 0] E [Y0(0)|D = 0]

Control strategy: Treated vs. Control in Post-Period

Use E [Y (1)|D = 1]− E [Y (1)|D = 0]

Assumes E [Y0(1)|D = 1] = E [Y0(1)|D = 0]
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The Potential Outcomes

Defining The Causal Effect

τit = Y1i (t)− Y0i (t)

Let’s now summarize what we observe:

Post-Period(t1) Pre-Period(t0)

Treated D = 1 E [Y1(1)|D = 1] E [Y0(0)|D = 1]
Control D = 0 E [Y0(1)|D = 0] E [Y0(0)|D = 0]

Control strategy: Difference-in-Differences

{E [Y (1)|D = 1]− E [Y (1)|D = 0]} − {E [Y (0)|D = 1]− E [Y (0)|D = 0]}

Assumes E [Y0(1)− Y0(0)|D = 1] = E [Y0(1)− Y0(0)|D = 0]
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A Graphical Illustration
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Parallel Trends

Identification Assumption

E [Y0(1)− Y0(0)|D = 1] = E [Y0(1)− Y0(0)|D = 0]

Intuition In the absence of the event/intervention etc., the treated and the
control group would change from t0 to t1 to the same rate.
What does that mean for our example?
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Parallel Trends: An Illustration

Montalvo, 2011
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Estimation

The Model

The heart of DD lies in the additive structure for potential outcomes
in the no-treatment state:

E [Yst(0)|s, t] = γs + λt

In the absence of the attack, vote for the Spanish Conservatives at
any province s = S at any time t = T is determined by the sum of a
time-invariant province effect and a year effect that is common across
provinces

Let Ds,t denote a dummy for votes of those living in Spain in 2004.
Assume that E [Y1st − Y0st |s, t] is constant, τ .

Then:

Yist = γs + λt + τDst + ust
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Estimation

Deriving the ATT

E [Yist |s = Absentees, t = 2004]−
E [Yist |s = Absentees, t = 2000] =

λ2004 − λ2000

E [Yist |s = Residents, t = 2004]−
E [Yist |s = Residents, t = 2000] =

λ2004 − λ2000 + τ

So, the difference-in-differences estimator is:

{E [Yist |s = Residents, t = 2004]−
E [Yist |s = Residents, t = 2000]}−
{E [Yist |s = Absentees, t = 2004]−

E [Yist |s = Absentees, t = 2000]} = τ
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The Regression Analogy

Two time points two groups

Yst = α + γResident + λYear2004 + τDst + ust

An equivalent formulation could be:

Yst = α + γResident + λYear2004 + τResident · Year2004 + ust

Two time points many groups

Yst = α + γs + λYear2004 + τDst + ust

Many time points many groups

Yst = α + γs + λt + τDst + ust
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Practical Issues

DD needs not be confined to two time points. Infromation about the
pre-intervention state is very useful for the evaluation of the parallel
trends assumption.

How can we relax the parallel trends assumption?

Include an (s)-specific trend: not always feasible with few time point,
needs at least four time points.

Extension: include the inclusion of two control groups instead of one:
Difference-in-Differences-in-Differences.
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Applications

Numerous

Pischke looks at a policy change in German schools (but not in
Bavaria) to identify the effect of schooling on income (Pichke 2007)

Card & Kruger exploit an increase in minimum wage in New Jersey,
comparing it with other states, in a DD framework as a way to see
whether increase in minimum wage increases unemployment

Bechtel and Hainmueller exploit the Elbe floods right before the 2002
German Federal election to examine whether voters vote change their
votes to express their gratitude to the incumbent when receiving
beneficial politics (Bechtel and Hainmueller 2011)

Plenty of other examples are available, this is a very popular and
easy-to-implement design.
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Extensions
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Multiple Control Groups

The Problem
Observational studies lack random assignment of units to control/treatment groups.
Addressing this problem often requires conditioning on a list of observables. But are
these covariates suffiicient? How would we know?

A solution
Use a second control group: In the best of circumstances, this test is consistent and
unbiased, and its power exceeds the probability of falsely detecting a treatment effect.”
(Rosenbaum, 1987)

When does it work?
One should select two control groups to systematically vary an unobserved
covariate?that is, to select groups known to differ substantially on the covariate, even
though the individual values of the covariate are unknown.If bias due to the unobserved
covariate is responsible for the differing outcomes in treated and control groups, then
this should be apparent, because the control groups should differ from each other (Lu &
Rosenbaum, 2004).
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Synthetic Control Method

Combine Matching with Dif-in-Difs: Re-weight control units to construct a
synthetic control unit, such that the weighted vector of observed
covariates matches the observed vector.

Software

Granted a list of covariates, both Stata & R easily implement the method.

When to use it

When you have a dif-in-difs with one main control unit (comparative low-n
time-T studies).
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An Example: California’s Proposition 99

Cigarette Consumption: CA and the Rest of the U.S.
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Teppei Yamamoto (MIT) Synthetic Control Quant II, Spring 2015 10 / 28
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Cigarette Consumption: CA Vs Synthetic CA

Cigarette Consumption: CA and synthetic CA
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Predictor Means
Predictor Means: Actual vs. Synthetic California

California Average of
Variables Real Synthetic 38 control states
Ln(GDP per capita) 10.08 9.86 9.86
Percent aged 15-24 17.40 17.40 17.29
Retail price 89.42 89.41 87.27
Beer consumption per capita 24.28 24.20 23.75
Cigarette sales per capita 1988 90.10 91.62 114.20
Cigarette sales per capita 1980 120.20 120.43 136.58
Cigarette sales per capita 1975 127.10 126.99 132.81
Note: All variables except lagged cigarette sales are averaged for the
1980-1988 period (beer consumption is averaged 1984-1988).

Teppei Yamamoto (MIT) Synthetic Control Quant II, Spring 2015 12 / 28
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Smoking GAP: CA vs Synthetic CA

Smoking Gap Between CA and synthetic CA
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Don’t let them fool you
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Lab Session: Applications
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Matching

Pim Fortuyn

Sociologist

Ex-member of the
socialist party

“Islam a backward
culture”

“If it were legally possible
I would close the borders
for Muslim immigrants”

List Pim Fortuyn in the
2002 Dutch Election

2002#Dutch#election:#Pim#Fortuyn

• Sociologist

• ‘Islam#a#backward#culture’

• ‘If#it#were#legally#possible#I#would#close#the#borders#for#Muslim#
immigrants’

• List#Pim#Fortuyn

Tuesday, 28 October 14
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The Design

The 2002 pre-election DPES

2002#Dutch#Election#Study

E31

14/04

-1

14/05

Days#before#the#election

Fieldwork#period

Tuesday, 28 October 14
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The Design

The 2002 pre-election DPES

2002#Dutch#Election#Study

E31

14/04

-1

14/05

Days#before#the#election

Fieldwork#period

06/05

Pim#Fortuyn#is#murdered

Tuesday, 28 October 14
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Matching

0.
00

0.
05

0.
10

1.
00

After Matching
Mean
Treated

Mean
Control P-values

Political Knowledge (0-12) 7.337 7.271

Political Knowledge (0-4) 1.507 1.479
Politics Home
When Adolescent (1-4) 2.622 2.647

Social Class (1-5) 2.956 2.937

Age (in years) 47.196 47.42

Urban/Rural (1-5) 3.05 3.009

Income (23 Categories) 11.606 11.551

Female 1.495 1.517

Education (1-11) 6.204 6.262

University Degree 0.332 0.323

Church Attendance 0.528 0.528

Panel Attrition 0.33 0.314

Voted in 1998 1.09 1.095

Voted PvdA in 1998 0.205 0.226

Voted CDA in 1998 0.172 0.151

Voted VVD in 1998 0.226 0.196

Voted D66 in 1998 0.092 0.097

BM t p-value
AM t p-value

BM KS p-value
AM KS p-value
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Visualization
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Instrumental Variables

The Question

Why does Party ID strengthen with age?
Hypothesis: Partisan predispositions are reinforced by voting for one’s
preferred party. Voting entails a choice over a set of alternatives, which
induces rationalization and provides a signal of group identity.

The Problem

[I]ndividuals choose whether to participate [and how to vote] in
elections, making it difficult to separate the effects of early voting
experiences from the forces that caused individuals to participate
and make their party choices at first place. (Meredith, 2009:2)

Data

The Youh-Parent Socialization Panel study, Four waves: 1965 - 1973 -
1982 - 1997
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The Identification Strategy

1965 1973

Age = 18 Age = 26

19721968
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The Identification Strategy

1965 1973

Age = 18 Age = 26

1968 1972

VotingAge = 21
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A Graphical Illustration
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Figure: Proportion of strong partisans, by date of birth
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A Graphical Illustration
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ITTVote68 = 16.8− 9.5 = 7.3%

ATTVote68 =
16.8− 9.5

0.63
= 11.58%
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1968 eligibility and strength of partisanship

(Strength of PID)73

Eligible68
.302

(.151)

n 782

Y: (Strength of Partisanship)73
0: Independent

1: Leaner

2: Weak Partisan

3: Strong Partisan
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A Placebo Test: Y=PID65

(Strength of PID)65

Eligible68
.058

(.287)

n 894

Y: (Strength of Partisanship)65
0: Independent

1: Leaner

2: Weak Partisan

3: Strong Partisan



276/294

Adjusting for one-sided non-compliance

(Strength of PID)73

V̂ote68
.319

(.173)

n 774

Y:Strength of Partisanship73 (0-3 scale):
Entries denote ATT estimates using the Wald Estimator
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Adding covariates

(Strength of PID)73

V̂ote68
.321

(.161)

n 774

Y:Strength of Partisanship73(0-3 scale):
Entries denote ATT estimates using the 2SLS Estimator
Indicative controls: parental education, political interest and PID
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Are the effects due to the age gap?

(Strength of PID)73

Older Eligibles68
.064 -.095

(.287) (.069)

(Strength of PID)65
.520

(.085)

n 894 894

Y:Strength of Partisanship73 (0-3 scale):
Eligibles split into two equally-sized groups.
Young group treated as non-elibiles.
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Lab Session: Applications (RDD)
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Regression Discontinuity Design

The Question

Why do some small parties persist whereas others die?
Hypothesis: Parliamentary representation comes with organisational and
other benefits which help small parties survive and perform better in future
elections.

The Problem

Parliamentary representation is not randomly assigned. Parties
that make it to the parliament are also likely to differ from
parties that do not make it in various respects

Solution

Use the discontinuities generated by the presence of electoral thresholds of
representation in PR systems
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E (Y |X ): No Outliers

Figure: Vote share at t1 given vote share at t0
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E (Y |X ): Without Israel & the Netherlands
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Figure: Vote share at t1 given vote share at t0
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E (D|X )
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Placebo Test
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Sorting: Visualisation (1)

Figure: Density of X at t0 given vote share at t0
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Sorting: Visualisation (2)
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Lab Session: Applications (Dif-in-Difs)
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The DD Running Example

The Question

Are governments rewarded when they deliver good policies?
Hypothesis: Eficient managerial administration has long-term electoral
returns.

The Problem

Retrospective voting is based on memory of governmental performance as
well as partisan priors, which bias voters’ perceptions. Governments choose
their policies on the basis of macroeconomic and electoral constraints. All
these factors would bias the etimate of reported retrospective voting.

Solution

Use a natural disaster where the incumbent did a good job in managing
the crisis. Use dif-in-difs to establish comparison both over time and across
space (unless the whole population is equally affected by the disaster)
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Schröeder’s Machine God

Bechtel and Hainmueller 2011854 MICHAEL M. BECHTEL AND JENS HAINMUELLER

The Elbe Flooding and the
Incumbent’s Policy Response

We now turn to the empirical estimation of an upper
bound for the electoral rewards to policy benefits and
their rate of decay by analyzing the effects of massive dis-
aster relief provided in the context of the 2002 Elbe flood-
ing. Prior to the Elbe flooding, citizens had little reason
to reelect the incumbent government led by Chancellor
Gerhard Schröder in the federal election in September
2002 (Roberts 2003; Rohrschneider and Fuchs 2003;
Schoen 2003). During his 1998 electoral campaign,
Schröder had promised to reduce unemployment below
3.5 million until 2002 and explicitly demanded that citi-
zens should vote him out of office if he failed to achieve
this target. But by early 2002 unemployment had in-
creased to 4.3 million, an increase of 300,000 since the
start of Schröder’s term. Moreover, macroeconomic fore-
casts provided little reason to believe in a quick recov-
ery of the weakening economy. Adding to the frustration
over the weakening economy, Schröder also promised
to implement a series of highly unpopular labor market
reforms. Unsurprisingly, Chancellor Gerhard Schröder’s
Social Democratic Party (SPD) and his coalition partner,
the Greens, were lagging in the polls (Hogwood 2004).
Many expected the conservative Christian Democratic
Party (CDU) together with the Liberals (FDP) to oust
the Schröder government in a landslide in the upcoming
election in September 2002 (Hogwood 2004).

A series of unprecedented rainfalls, which began in
early to mid-August and peaked around the 12th to 13th,
caused the Elbe River to trigger the worst flood in modern
German history. By August 17 the Elbe River reached an
all-time high of 9.4 meters in Dresden, the highest mark
ever recorded. From a hydrological perspective, floods
with such severity occur only once every 500 to 1,000
years (IKSE 2003). Figure 1 displays a map of all 299 elec-
toral districts in the 2002 election. All electoral districts
that were directly affected by the flood are highlighted in
dark gray (the coding of affectedness is described below).
The affected districts cluster along the Elbe River and ex-
tend from the area south of Hamburg all the way toward
the border with the Czech Republic in a southeastern
direction.

In sum, the affected regions suffered 21 casualties and
more than 30,000 people had to be evacuated. The best
available estimates indicate that the economic damage
from the flood exceeded €15 billion (Bundesministerium
der Verteidigung 2002; Mechler and Weichselgartner
2003). This damage compares in size to that caused by the
1999 earthquakes in Turkey and amounts to more than

FIGURE 1 Affected versus Unaffected Electoral
Districts in the 2002 Election

Note: The map shows the boundaries of the 299 electoral districts
in the 2002 German federal election. Directly flood-affected dis-
tricts (i.e., Flooded = 1) are shaded dark gray; unaffected districts
are shaded light gray. A district was coded as affected if it experi-
enced at least one of the following events: stabilization or breach
of levees, flood warning, overtopping of levee, flooding, evacua-
tion warning, or evacuation. Source: Own computation based on
flood report by the International Commission for the Protection
of the Elbe River (2002).

50% of the damage from Hurricane Andrew and approx-
imately 12% of the estimated damage from Hurricane
Katrina (Sawada and Shimizutani 2008). In Dresden, one
of the most affected cities, the local damage amounted
to €400 million, equaling 47% of the annual municipal
budget of 2002. In the Sachsen region, the flood damage
amounted to about 42% of the annual regional budget of
2002 (Mechler and Weichselgartner 2003).

While the flood caught all political parties by sur-
prise, it fundamentally changed the campaign dynamics
for the upcoming election (exogenously) scheduled for
September 22 in ways particularly important from
the perspective of our theory.2 The incumbent SPD

2The timing of regular federal elections in Germany is fixed exoge-
nously (article 39 of the German constitutional law).

Wednesday, 11 June 14
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The Model

The Intuition

Three steps:

The floods affected part of Germany. Compare between affected and
non-affected.

Elections in Germany took place before and after the floods. Compare
between before and after.

Combine the first two comparisons:

Assumption

The parallel trends assumption:
E [Y0i ,2002 − Y0i ,1998|Di = 1] = E [Y0i ,2002 − Y0i ,1998|Di = 0]
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Estimation

ATT

Define the ATT as
α = {E [Yi ,2002|Di = 1]− E [Yi , 1998|Di = 1]} − {E [Yi ,2002|Di =
0]− E [Yi , 1998|D = 0]}. In a regression framework:
Yit = γi + δt + αDit + X o

itβ + uit
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The Results

Short- and long-term results & the placebo.

HOW LASTING IS VOTER GRATITUDE? 857

TABLE 1 Short- and Long-Term Effects on SPD PR Vote Shares

Dependent SPD PR Vote Share
Variable
Election Years 1994–1998 1998–2002 1998–2005 1998–2009

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Flooded −0.00 7.14 6.91 6.78 1.99 1.94 1.54 1.29 0.89 0.72

(0.34) (0.47) (0.57) (0.68) (0.47) (0.47) (0.45) (0.66) (0.57) (0.49)
Post Period 4.61 −2.88 −3.98 −6.77 −6.76 −17.97 −15.03

(0.14) (0.23) (1.07) (0.15) (0.63) (0.16) (0.52)
Population Density −0.06 −0.05 1.55 1.03 2.53 1.23

(1.36) (1.36) (1.22) (1.21) (0.88) (0.59)
Share of Elderly 0.40 0.41 −0.01 0.02 −0.12 −0.11

(0.40) (0.40) (0.17) (0.16) (0.10) (0.07)
Population Outflow −0.04 −0.04 0.06 0.07 −0.04 −0.01

(0.03) (0.03) (0.02) (0.02) (0.02) (0.01)
Unemployment Rate −0.13 −0.14 0.11 0.06 0.44 0.26

(0.20) (0.20) (0.14) (0.13) (0.09) (0.07)
Employment Share: −1.58 −1.56 3.95 3.42

Agriculture (3.67) (3.72) (2.09) (2.07)
Employment Share: −1.20 −1.22 4.11 3.53

Manufacturing (3.58) (3.62) (2.09) (2.06)
Employment Share: −1.31 −1.32 4.17 3.59

Trade Services (3.59) (3.63) (2.10) (2.07)
Employment Share: −1.12 −1.13 4.12 3.58

Other Services (3.57) (3.62) (2.09) (2.06)
Share of Foreigners 20.09 20.00 −8.97 −5.62 −18.85 −13.31

(15.09) (14.79) (10.85) (9.46) (11.90) (5.59)
SPD Incumbent in −1.12 −1.13 0.02 −0.87 1.87 −0.84

Land (0.49) (0.48) (0.24) (0.23) (0.29) (0.24)
Lagged SPD −0.02 −0.12 −0.29

Vote Share (0.03) (0.02) (0.02)
Intercept 36.45 40.86 152.84 −3.39 40.85 −373.24 −2.44 40.89 36.05 −4.97

(0.06) (0.10) (357.20) (1.58) (0.07) (209.37) (1.01) (0.08) (2.93) (0.70)
District Fixed Effects x x x x x x x
First Differences x x x
N 656 598 598 299 598 598 299 598 598 299

Note: Regression coefficients shown with robust standard errors in parentheses (standard errors for the fixed effects models are clustered by
district). Each regression is based on district-level data from two election periods (1994 and 1998 for Model 1; 1998 and 2002 for Models
2–4; 1998 and 2005 for Models 5–7; 1998 and 2009 for Models 8–10). Models 1–3, 5–6, and 8–9 are fixed effects regressions where the
dependent variable is the district-level SPD PR vote share. Models 4, 7, and 10 are first differences regressions where the dependent variable
is the change in SPD PR vote share between elections and all covariates (except the Flooded indicator and the lagged vote share level) are
also first-differenced. Flooded is coded one for districts that were directly affected by the 2002 Elbe flood and zero otherwise. All variables
are adjusted for redistricting. Employment Shares are omitted for Models 8 and 9 since these data are unavailable for this period.

a virtually identical trend prior to the Elbe flood. The SPD
on average gains about 4.6 percentage points nationwide,
but this increase is identical in treated districts that are
eventually flooded in 2002 and control districts that are
not directly affected by the 2002 flood. The placebo effect
estimate is almost exactly zero (−.00), and the 95% confi-
dence interval ranges from [ − .6, .6] percentage points of
vote share. This strikingly parallel trend of SPD vote share
in both groups in the preflood period increases the confi-
dence in our identification assumption. Given the parallel

trends in the preflood period, it seems plausible to assume
that, in the absence of the flood, the group of affected and
unaffected districts would have continued on approxi-
mately parallel trends in the posttreatment period.

Short-Term Electoral Returns

Models 2–4 in Table 1 show our difference-in-differences
estimates for the short-term electoral rewards for the
flood response as measured by the increase in SPD PR

Wednesday, 11 June 14
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The Parallel Trends Assumption?
Using Opinion Poll Data

HOW LASTING IS VOTER GRATITUDE? 859

FIGURE 2 SPD and CDU/CSU Popularity in Flooded Regions versus the Rest of Germany
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Note: Percent of voters who intend to vote for the SPD (left panel) and CDU/CSU (right panel) with .90 confidence envelopes. Based
on Forsa polling data (average monthly N = 8,753 [min N = 6,044, max N = 9,889]) available at GESIS – Leibniz Institute for the
Social Sciences (dataset identification code: ZA3909).

estimates from the benchmark fixed-effects specification.
We find that the SPD PR vote share increases by about
2 percentage points on average in directly affected dis-
tricts. This indicates that about 25% of the short-term
electoral gain generated by the SPD’s flood response car-
ries over to the 2005 election. As can be seen in Mod-
els 6 and 7, this remaining long-term effect is robust to
the inclusion of our time-varying covariates and also the
lagged vote shares. This evidence suggests that at least in
an ideal case scenario such as the massive, targeted bene-
fits provided by the policy response to the Elbe flooding,
politicians may be able to reap more lasting rewards from
voters for beneficial policies.

In Models 8–10, we consider whether the rewards
carry over to the 2009 election. According to the bench-
mark specification in Model 8, the SPD still enjoys a small,
and statistically significant, advantage of 1.3 percentage
points of vote share in affected areas. However, this ef-
fect is further reduced in magnitude and even becomes
insignificant once we enter our time-varying covariates
in Model 9. As the most comprehensive model with all
covariates and lagged vote shares, Model 10 shows that
the SPD gain is further reduced to .7 percentage points,
and we no longer have sufficient precision to reject the
null at conventional levels (p-value < .15). Overall, these
findings suggest that, in this second election that occurred
seven years after the flood, the electoral returns declined
further and are now indistinguishable from zero.

Figure 3 summarizes the overall dynamics of how the
electoral returns decay over time. The upper panel shows
the trend in vote shares in affected and unaffected dis-
tricts over the entire period from 1994 to 2009. The lower

panel maps out the covariate adjusted return estimates
with their 95% confidence envelopes for each of the peri-
ods. Starting from almost perfectly parallel trends in the
1994 to 1998 period, the flood response induced large
short-term gains in the 2002 election. About a quarter
of this return carries over to the 2005 election where the
SPD still exhibits excess gains in the affected areas. By
2009, however, the effect has almost faded, and the two
groups return to their parallel dynamics as experienced in
the preflood period. This return to parallel trends lends
confidence to the results, as it suggests that the flood re-
sponse affected vote choice in two following elections, but
was not associated with other fundamental changes that
would make affected and unaffected districts incompara-
ble in the long run.

To gain an impression of the short- and long-term
electoral returns that explicitly takes into account the
massive government transfers, we computed the short-
and long-term returns to disaster relief spending and the
price of one additional vote in the affected regions. These
figures are based on our findings and information about
the absolute number of SPD votes in the affected districts.
Using the 7 percentage points estimate for our treatment
measure and the €7.1 billion size of the disaster relief
fund, we can say that the short-term electoral return to
the federal incumbent’s disaster spending efforts in the
affected regions equaled a one percentage point SPD vote
share increase per one billion euros. This means that for
every billion spent on disaster aid, the incumbent party
received about 16,300 additional votes; the average price
per vote in the affected regions equals about €61,300 in
2002. Once we take the long-term rewards into account,

Wednesday, 11 June 14

Is this sufficient evidence?
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