Oxford Q-Step Centre Data Day: Introduction to R

Claire Peacock

April 1, 2017

In this lab we will be getting to know R using the EU referendum data and text data on referendum-related
speeches by the party leaders. You will get the chance to:

o see how R works (using a program called RStudio),
e make your own plots,
e and more!

For the lab today, we will work in partners (or small groups of 3). You can choose to all run the code
on your own computers or all gather around one person’s computer.

0.1 Some basic information

o A script is a text file in which you write your R commands (code) and comments.

e Remember to save your script or send it to yourself at the end of the lab session so you can use it at
home. To do this click File —> Save as. This makes a .R file which can be opened in Rstudio at home
or in a text editor.

e If you put the # character in your command, anything in the same line following the # will not be
executed; this is useful to add comments to your script!

+ R is case sensitive, so be careful when typing.

e To run your commands, highlight the relevant line of code in your script and click on Run, or select
the line and hit ctrl + enter (cmd + enter on Mac).

e By pressing the up key, you can go back to the commands you have used before.

e Press the tab key to auto-complete variable names and commands.

0.2 Getting Started in the Q-Step Lab

Begin by opening RStudio (located on the desktop).

Your first task is to create a new script (this is where we will write our commands). To do so, click File —>
New File —> R Script.

Your screen should now have four panes:
o the Source Editor (top left)
e the Console (bottom left)
o the Environment/History (top right),
« and Files/Plots/Packages/Help/Viewer (bottom right).

Now you are now ready to get started!

0.3 A simple script

The Source Editor (top left) is where we write our commands for R. Let’s try writing your first command.
Type the following command into your script (editing the message as you like)!

x <- "My message goes here"
To tell R to run the command, highlight the relevant row in your script and click the Run button (top right
of the Source Editor) or hold down ctrl + enter (PC) or ¢cmd + enter (Mac).

Running the command above creates an object named ‘x’, now visible in the Environment (top right) that
contains the words of your message. It is good practice to name your objects so you can later refer
back to them!

You can now see ‘x’ in the Environment (top right). To view what is contained in x, in the Console (bottom
left) type:
X

o After pressing enter, what happens?
e What happens when you run the previous command with an uppercase ‘X’?

Now you are ready to load the data we will need in the lab.

1 Part 1: The Demographics of Brexit

1.1 Loading Data into R

To load the data we will be using, run the following command. To do so, either type the command into your
script and run it from there or paste it directly into the Console and press enter. From this point onwards,
you can choose how to run your commands (i.e. directly in the Console or in your script).

#TO DO: ADJUST AS NEEDED FOR THE LAB!
Brexit_data <- read.csv("/Users/clairepeacock/Documents/Q_step/Access_labs/data/brexit_lab_vars.csv", s

Now we have loaded our data and named it “Brexit_data”. To view the data, click on it in the Environment
or run the following command:

View(Brexit_data)

In the data viewer, you can click on the row names of the columns to sort the data. Test it out!

1.2 Working with the EU referendum data

Now it’s time to get to know our data. The EU referendum data comes directly from the Electoral Commission.
All remaining variables are from the 2011 UK Census (except for the ‘earnings’ variables which are from the
2016 Annual Survey of Hours and Earnings).

While we are going to look at correlations in this lab between demographic features and voting patterns, it is
important to recognize the limitations of (and possibilities associated with!) the data we rely on. Before
continuing, take a moment to think about the following questions with your partner.

e If you had voted in the EU referendum, what factors would have influenced your decision?

e Are the factors that would have influenced you possible to measure? Why or why not? Are they
included in the data we have provided?

http://www.electoralcommission.org.uk/find-information-by-subject/elections-and-referendums/past-elections-and-referendums/eu-referendum/electorate-and-count-information
nomisweb.co.uk

1.3 Plotting

Let’s begin our analysis by making some plots!

Age was a key explanation discussed in the media of the referendum results. In order to analyze for ourselves
the relationship between age and EU referendum voting, we can make a plot of the percent of voters who
voted “remain” against the mean age in each area. To do so run the following commands:

Hint: the command is set up as follows:
name_of plot <- ggplot(name_of data, aes(x=name_of x, y=name_of y)) + add some specifications ...

e aes stands for aesthetics and is used to specify what we actually want to see in the plot

library(ggplot2) # loads the plotting library we need
remain_age <- ggplot(Brexit_data, # make a plot with the ggplot command
using data from Brezit_data & name it 'remain_age'
aes(x=age_mean, y=Percent_Remain)) + # pick z and y variables
geom_point (shape=1) # shape=1 --> use hollow circles for dots
remain_age # View the plot

o This creates a (very!) basic scatterplot of our two variables.

e What does our plot tell us about the relationship between the two variables? Hint: What do the axes
represent?

e How many conclusions can we draw from this plot?
e What should we be aware of when using this data?

When we create scatterplots to assess correlation, it is important that we ask ourselves why the variables we
look at might be related to eachother.

e In this case, why might mean age affect voting habits in the EU referendum? What other explanations
might do better?

Optional: You can also try running this plot using the “Percent_ Leave” data instead. To do so, you can copy
the command above but change the relevant variable. Name this new plot leave__age (Hint: remember to
use the “<-” symbol to name your object).

1.4 Editing a plot

If we want to add more information to our plot, we can do many things. For example, we could:
e rename the axes,
e insert labels,
e change the size of the dots,
e adjust the axes,
e change the background to be black and white,
e add a line of best fit.

remain_age <- remain_age + # Tell R to keep our plot but to add some more detazl!
xlab("Age (average)") + # Label z azis
ylab("Remain votes (%)") + # Label y azxis
theme_bw() + # Remove gray background (i.e. make black and white)
geom_point (aes(size = Residents_total, colour=Region)) +
change size of dots to population size

change colour to match Tegions
geom_smooth (method=1m, # Add line of best fit
se=FALSE) + # Don't add shaded confidence region
scale_x_continuous(limits c(30, 50)) + # sets z—azis scale
scale_y_continuous(limits = c(20, 80)) # sets y-azis scale

remain_age # View the plot

Now we have a lot more information (in fact this figure probably shows too much information)!
e What does the size of the dots represent? What do the colours represent? Are they useful?
« Is the relationship clearer now with the line of best fit? What direction is the line of best fit?

Let’s try to make our plot a bit more readable by choosing just a few features to include in preparation for
making an interactive plot:

remain_age2 <- ggplot(Brexit_data, # make a plot using data from Brezit_data
& name it 'remain_age'
aes(x=age_mean, y=Percent_Remain, label=Area)) + # pick z and y
variables & labels
note the labels won't show up until the interactive plot
in the next command
theme_bw() + # Remove gray background (i.e. make black and white)
geom_point (shape=1) + # Use hollow circles for dots with shape=1
scale_x_continuous(limits = c(30, 50)) + # sets z-axis scale
scale_y_continuous(limits = c(20, 80)) + # sets y-azis scale
geom_smooth (method=1m, # Add line of best fit
se=FALSE) + # Don't add shaded confidence region
xlab("Remain votes (%)") + # Label z azis
ylab("Age (average)") # Label y azis

remain_age2 # View the plot

1.5 Making our plots interactive

If we want to get more from our plots, we can make them interactive. For our scatterplots, this means that
we can hover over parts of our plot to get more details. Try running the following commands to make an
interactive scatterplot.

library(plotly) # loads the library we need to make our plots interactive
remain_age2 <- ggplotly(remain_age2) # Make it interactive! Now the transparent
labels from above show up!
remain_age2 # Now view %t again and notice the difference.
e Hover your mouse over the different points on the plot. What do you notice?
e Try zooming in and out and looking at the other options in the menu at the top of the plot.
e Can you find your home area?
e Are any of the points suprising?

Now that we have our basic interactive plot, we can also go a bit further. Let’s check to see if there is any
regional variation of interest. This time we can run all our commands together (i.e. make a plot with a couple
of specifications and then make it interactive in one go)!

remain_age_region <- ggplot(Brexit_data,
aes(x=age_mean, y=Percent_Remain, colour=Region)) +

theme_bw() + # Remove gray background (i.e. make black & white)

geom_point() + # Use filled in circles by not selecting a shape

geom_smooth (method=1m, # Add line of best fit

se=FALSE) + # Don't add shaded confidence region

scale_y_continuous(limits = c(20, 80)) # sets z azis
remain_age_region <- ggplotly(remain_age_region) # Make the plot interactive
remain_age_region # View the plot

« Can you go back and label the axes on this plot using the commands you learned above?

e Does this plot give you any more useful information than the previous ones?

e Can this plot tell us anything about regional variation in the relationship between age and voting
‘remain’ in the referendum? (Hint: look at the slope of the lines, also try clicking on the coloured dots
in the legend to include and remove certain data)

1.6 On your own
Now it’s your turn to use the data to inspect some correlations between referendum voting
and the demographics of an area!

e With your partner, try out some of the code given to you above but with different variables alongside
the voting data to see what you can find. At the end of the lab, you will have the opportunity to share
some of your results.

2 Part 2: Brexit in words

One aspect of understanding the results of the EU referendum is looking at the correlations between voting
for Brexit and demographics in each area. However, a key battle of the Brexit campaign waged with words
through social media, speeches, and in the newspapers. This type of text data can also be analysed!

One way to assess this text data is to use some of the basic tools of text analysis.

For this activity, we will load and analyze three texts from June 21, 2016 - two days before the final vote.
e The first is a speech made by then Prime Minister David Cameron of the Conservative Party.
e The second is an article written by UKIP’s Nigel Farage.
e The third is a speech made by Labour leader Jeremy Corbyn.

Together, these three texts form what is referred to as a corpus. A corpus is simply a grouping of texts.

2.1 Loading the text data

Run the following command to load the text data:

TO DO: ADJUST FILEPATHS AS NECESSARY!

library(quanteda) # The library with the tools we need!

Load the files

speech_files <- textfile("/Users/clairepeacock/Documents/Q_step/Access_labs/Data/*.txt",
cache = FALSE)

Next we can have a look at what we have loaded. Let’s start with the first file.

http://www.independent.co.uk/news/uk/politics/eu-referendum-brexit-latest-live-david-cameron-full-speech-remain-leave-a7093426.html
http://www.express.co.uk/comment/expresscomment/681776/nigel-farage-eu-referendum-brexit-vote-leave-independence-ukip
http://press.labour.org.uk/post/146259185919/jeremy-corbyns-speech-in-the-peoples-history

summary (corpus (speech_files), 1) # shows overview of first speech
texts(speech_files) [1] # shows text of 1st speech

In the output, note that Types tells you how many unique words there are and Tokens tells you how many
words there are in the given text. The n’s you see in the print out are simply placemarkers indicating a new
paragraph in the original text formatting.

Now check the next two files.

e What do you need to change in the commands above to look at the next files?

2.2 Formatting the text data

Now we need to do a bit of final formatting before we analyze the data. First we need to tell R how to format
our files.

speech_corpus <- corpus(speech_files) # Tell R to make the files into the corpus format
(alltogether as one object)

Now, we can make a table counting the occurence of words in each speech.

speech_table <- dfm(speech_corpus, ignoredFeatures=stopwords("SMART"),

stem = FALSE, removeTwitter=TRUE)
SMART means change everything —--> lowercase, remove punctuation & numbers & whitespace
removeTwitter means @ & # are taken out.

To view the top 10 most occuring words in the table, run the following command:

topfeatures(speech_table, 10) # top 10 most-occuring words/features
of all texts taken together

What if we want to view each text individually? Re-run the previous 3 command chunks for each speech
using the following commands:

cameron_corpus <- corpus(speech_files) [1] # Make a corpus for each individual text

corbyn_corpus <- corpus(speech_files) [2]

farage_corpus <- corpus(speech_files) [3]

Now make a table for each text:

cameron_table <- dfm(cameron_corpus, ignoredFeatures=stopwords("SMART"),
stem = FALSE, removeTwitter=TRUE)

corbyn_table <- dfm(corbyn_corpus, ignoredFeatures=stopwords("SMART"),
stem = FALSE, removeTwitter=TRUE)

farage_table <- dfm(farage_corpus, ignoredFeatures=stopwords("SMART"),
stem = FALSE, removeTwitter=TRUE)

topfeatures(cameron_table, 10) # top 10 most-occuring words/features

topfeatures(farage_table, 10) # top 10 most-occuring words/features

topfeatures(corbyn_table, 10) # top 10 most-occuring words/features

o How do the tables of top 10 words compare in each text (the top row is Cameron, the middle is Farage,
and the final row is Corbyn)?

e Are you suprised by anything?

2.3 Making word clouds

In our last step, we can visualize the texts using a word cloud. Hint: In order for the plot to work properly
make sure you make your Plot pane large by dragging the left side across your screen.

plot(cameron_table, comparison=FALSE, max.words=30)
plot(farage_table, comparison=FALSE, max.words=30)

plot(corbyn_table, comparison=FALSE, max.words=30)

e What do the plots tell us about the word choice of each politician?
o What differences are there between the plots?

2.4 Add-on activity at home (or in the lab if you have time!)
The same principles that we applied above (i.e. loading a .txt file into R and analyze it using basic text
descriptives) can be used on other types of text data.

For example, you can easily analyze Twitter feeds using R by copying the ones you are interested in into a
txt file. If you wanted to go further, you could even load your own entire Twitter archive or excerpts from
others’ and analyze them using R (try advanced this tutorial).

e For this activity, choose another source of text that interests you and load it into R to analyze using
the commands you learned above (and you can share it with the group if you would like)!

3 Extra information

3.1 Getting Started with R at Home

If you are on a computer at home, you can load R to continue working on some of the examples from the lab
and try out some new ideas.

e PC: you will need to load R and the desktop version of RStudio.
e« Mac: you will need R and RStudio but also XQuartz.

e All three programs are free. Make sure to load everything listed above for your operating system or R
will not work properly!

Once you have loaded the programs above, you can open and use RStudio (you do not need to separately
open XQuartz or R).

3.2 Knowing where R saves your documents

If you are at home, when you open a new script make sure to check and set your working directory (i.e. the
folder where the files you create will be saved).

o To check your working directory use the getwd() command (type it into the Console or write it in your
script in the Source Editor):

getwd ()

o To set your working directory, run the following command, substituting the file directory of your choice.
Remember that anything following the ‘#’ symbol is simply a clarifying comment and R will not process
it.

Example for Mac (remove the 1st '#' symbol to run this command)
setwd("/Users/Documents/mydir/")

https://www.credera.com/blog/business-intelligence/twitter-analytics-using-r-part-1-extract-tweets/
https://cran.r-project.org
https://www.rstudio.com/products/rstudio/
https://cran.r-project.org
https://www.rstudio.com/products/rstudio/
https://www.xquartz.org

Example for PC (remove the 1st '#' symbol to run this command)
setwd("c:/docs/mydir")

4 Variable Cheatsheet

GENERAL:

1] Area Voting Area

2] Region__Code

3] Region

4] Area_ Code

5] Electorate Number of Voters in the Area

[
[
[
[
[

EU Referendum Data:

6] ExpectedBallots Ezpected ballots for referendum

7] VerifiedBallotPapers Verified ballot papers for referendum
8] Percent__Turnout Percent turnout in referendum

9] Votes__Cast Total votes cast in referendum

[
[
[
[
[

10] Valid__Votes These are the votes that actually counted (i.e. they were not rejected) in the
referendum

11] Remain Number of votes for remain in referendum

12] Leave Number of votes for leave in referendum

13] Percent__Remain Percent of total votes for remain in referendum
14] Percent__Leave Percent of total votes for leave in referendum

15] Rejected__Ballots

16] No__official__mark Reason for rejecting referendum ballot

17] Voting_ for_ both__answers Reason for rejecting referendum ballot
18] Writing_or__mark Reason for rejecting referendum ballot

19] Unmarked__or__void Reason for rejecting referendum ballot

[
[
[
[
[
[
[
[
[
[

20] Percent__Rejected Percent of referendum ballots rejected

CENSUS DATA 2011/ANNUAL SURVEY OF HOURS AND EARNINGS 2016

[21] Residents__total Number of residents

[23] Economically__active__percent Percent of residents who are economically active

24] Employed__of economically active__percent Percent of economically active residents who
are employed

]

[22] Population__Density Population density
]
]

[25] Unemployed__Age50__74__percent Percent of residents unemployed between ages 50 and 74
[26] Health_ very_ good Self-reported general health - number

27] Health__very_ good__percent Self-reported general health - percent
28] Health_ good Self-reported general health - number

29] Health_ good_ percent Self-reported general health - percent

30] Health__ fair Self-reported general health - number

[27]
[28]
[29]
[30]
[31] Health__fair__percent Self-reported general health - percent
[32] Health__bad Self-reported general health - number

[33] Health_ bad_ percent Self-reported general health - percent

[34] Health__very_ bad Self-reported general health - number

[35] Health__very_ bad__percent Self-reported general health - percent
[

36] Single_ never__married__percent Percent of all usual residents aged 16 and over who are single
and have never married

[37) Married__percent Percent of all usual residents aged 16 and over who are married

[38] Occup__high_manage__admin__profess_ percent Occupation of usual residents aged 16-74:
percent in high managerial, administrative, or professional positions

[39] Occup__low__manage admin_ profess_ percent Occupation of usual residents aged 16-74:
percent in low managerial, administrative, or professional positions

[40] Occup__intermediate__percent Occupation of usual residents aged 16-74: percent in intermediate
jobs

[41] Occup__small__employer_percent Occupation of usual residents aged 16-74: percent employed
by a small employer

[42] Occup__low__supervis__technical__percent Occupation of usual residents aged 16-74: percent
in low supervisory or technical jobs

[43] Occup__semi_ routine_ percent Occupation of usual residents aged 16-74: percent in semi
routine occupations

[44] Occup__routine__percent Occupation of usual residents aged 16-74: percent in routine occupa-
tions

[45] Earnings_ Median Median value of gross pay for full time workers, before tax, National Insurance
or other deductions

[46] Earnings_ Mean Mean value of gross pay for full time workers, before taz, National Insurance or
other deductions

[47] Bachelors__deg_ percent Percent of all usual residents aged 16 and over with a bachelors degree
[48] age__mean Mean age of usual residents

[49] age__median Median age of usual residents

[50] Birth_ UK Country of birth of usual residents - number born in UK

[51] Birth_ UK_ percent Country of birth of usual residents - percent born in UK

[52] Birth__other_ EU Country of birth of usual residents - number born in other EU country
[

53] Birth__other_ EU_ percent Country of birth of usual residents - percent born in other EU
country

[54] Birth__Africa Country of birth of usual residents - number born in other Africa

[55] Birth__Africa__percent Country of birth of usual residents - percent born in other Africa

[56] Birth_ MidEast__Asia Country of birth of usual residents - number born in other Middle Fast
or Asia

[57] Birth_ MidEast__Asia_ percent Country of birth of usual residents - percent born in other
Middle Fast or Asia

[58] Birth__Americas__ Carrib Country of birth of usual residents - number born in other Americas
or Carribean

[59] Birth__ Americas_ Carrib__percent Country of birth of usual residents - percent born in other
Americas or Carribean

[60] Birth__Antarctica_ Oceania__Other Country of birth of usual residents - number born in other
Antarctica, Oceania, or other

[61] Birth__Antarctica_ Oceania_ Other__percent Country of birth of usual residents - percent
born in other Antarctica, Oceania, or other

10

	Some basic information
	Getting Started in the Q-Step Lab
	A simple script
	Part 1: The Demographics of Brexit
	Loading Data into R
	Working with the EU referendum data
	Plotting
	Editing a plot
	Making our plots interactive
	On your own

	Part 2: Brexit in words
	Loading the text data
	Formatting the text data
	Making word clouds
	Add-on activity at home (or in the lab if you have time!)

	Extra information
	Getting Started with R at Home
	Knowing where R saves your documents

	Variable Cheatsheet

